OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 12, Iss. 1 — Mar. 25, 2008
  • pp: 1–6

Detection of Methane and Ethane by Continuous-Wave Cavity Ring-Down Spectroscopy Near 1.67 μm

Myoung-Kyu Oh, Yong-Hoon Lee, Sung-Chul Choi, Do-Kyeong Ko, and Jong-Min Lee  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 12, Issue 1, pp. 1-6 (2008)


View Full Text Article

Acrobat PDF (549 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We report the simple detection method of the small hydrocarbons, methane and ethane, by continuous-wave cavity ring-down spectroscopy near 1.67 <TEX>${\mu}m$</TEX> using an external cavity diode laser. The absorption lines of methane between 6002.48 <TEX>$cm^{-1}$</TEX> and 6003.37 <TEX>$cm^{-1}$</TEX> and ethane between 5955.65 <TEX>$cm^{-1}$</TEX> and 5956.4 <TEX>$cm^{-1}$</TEX> have been resolved and employed for the gas detection. The largest absorption cross sections were found to be 6.5<TEX>$\times10^{-20}cm^2$</TEX> and 7.4<TEX>$\times10^{-21}cm^2$</TEX> for methane and ethane, respectively, in each spectral range. The minimum detectable absorption limit of our spectrometer was 4.8<TEX>${\times}10^{-9}cm^{-1}$</TEX>/<TEX>$\sqrt{Hz}$</TEX>, which corresponds to the detection limits of 3 ppb/<TEX>$\sqrt{Hz}$</TEX> and 27 ppb/<TEX>$\sqrt{Hz}$</TEX> for methane and ethane, respectively. The near-IR continuous-wave cavity ring-down spectroscopic detection method of the small hydrocarbons can be applied for medical diagnosis and environmental monitoring as a fast and convenient method.

© 2008 Optical Society of Korea

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.0300) Spectroscopy : Spectroscopy

History
Original Manuscript: November 26, 2007
Revised Manuscript: December 19, 2007
Published: March 25, 2008

Citation
Myoung-Kyu Oh, Yong-Hoon Lee, Sung-Chul Choi, Do-Kyeong Ko, and Jong-Min Lee, "Detection of Methane and Ethane by Continuous-Wave Cavity Ring-Down Spectroscopy Near 1.67 μm," J. Opt. Soc. Korea 12, 1-6 (2008)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-12-1-1


Sort:  Year  |  Journal  |  Reset

References

  1. A. O"Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum., vol. 59, pp. 2544-2551, 1988 [CrossRef]
  2. G. Berden, R. Peeters, and G. Meijer, “Cavity ringdown spectroscopy: Experimental schemes and applications," Int. Rev. Phys. Chem., vol. 19, pp. 565-607, 2000 [CrossRef]
  3. M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C, vol. 101, pp. 100-142, 2005 [CrossRef]
  4. M. R. Mccurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B, vol. 85, pp. 445-452, 2006 [CrossRef]
  5. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O"Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B, vol. 81, pp. 705-710, 2005 [CrossRef]
  6. K. D. Skeldon, G. M. Gibson, C. A. Wyse, L. C. McMillan, S. D. Monk, C. Longbottom, and M. J. Padgett, “Development of high-resolution real-time subppb ethane spectroscopy and some pilot studies in life science,” Appl. Opt., vol. 44, pp. 4712-4721, 2005 [CrossRef]
  7. K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. McMillen, P. J. McCann, and M. A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B, vol. 85, pp. 427-435, 2006 [CrossRef]
  8. A. Popp, F. Muller, F. Kuhnemann, S. Schiller, G. von Basum, H. Dahnke, P. Hering, and M. Murtz, “Ultrasensitive mid-infrared cavity leak-out spectroscopy using a cw optical parametric oscillator,” Appl. Phys. B, vol. 75, pp. 751-754, 2002 [CrossRef]
  9. D. Halmer, S. Thelen, P. Hering, M. Murtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrosmeter,” Appl. Phys. B, vol. 85, pp. 437-443, 2006 [CrossRef]
  10. G. von Basum, D. Halmer, P. Hering, M. Murtz, S. Schiller, F. Muller, A. Popp, and F. Kuhnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator caivtiy leak-out spectrometer,” Opt. Lett., vol. 29, pp. 797-799, 2004 [CrossRef]
  11. Jun Ye, Long-Sheng Ma, and John L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B, vol. 15, pp. 6-15, 1998 [CrossRef]
  12. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum., vol. 71, pp. 347-353, 2000 [CrossRef]
  13. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B, vol. 85, pp. 355-364, 2006 [CrossRef]
  14. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem., vol. 74, pp. 2003-2007, 2002 [CrossRef]
  15. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys., vol. 83, pp. 3991- 3997, 1998 [CrossRef]
  16. HITRAN2000 database, www.hitran.com
  17. Chuji Wang, Susan T. Scherrer, and Delwar Hossain, “Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: Potential for development of a breath analyzer,” Applied Spectroscopy, vol. 58, pp. 784-791, 2004 [CrossRef]
  18. B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, “Trace detection of methane using continuous wave cavity ring-down spectroscopy at <TEX>$1.65{\mu}m$</TEX>”, Phys. Chem. Chem. Phys., vol. 4, pp. 5960-5965, 2002 [CrossRef]
  19. A. W. Liu, S. Kassi and A. Campargue, “High sensitivity cw-cavity ring down spectroscopy of <TEX>$CH_4$</TEX> in the <TEX>$1.55{\mu}m$</TEX> transparency window”, Chem. Phys. Lett., vol. 447, pp. 16-20, 2007 [CrossRef]
  20. D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys., vol. 99, pp. 6287-6301, 1993 [CrossRef]
  21. H. S. Moon , W. K. Lee, and H. S. Suh, “Saturated Absorption Spectroscopy of <TEX>$^{12}C_2H_2$</TEX>in the Near Infrared Region”, Journal of the Optical Society Korea, vol. 8, No. 1, pp. 1-5, 2004
  22. L. G. Smith, “The Infra-Red Spectrum of <TEX>$C_2H_6$</TEX>,” J. Chem. Phys., vol. 17, pp. 139-167, 1949 [CrossRef]
  23. EDGAR 32FT2000. Emission Database for Global Atmospheric Research, version 3.2, fast track 2000 project, www.mnp.nl/edgar/model/v32ft2000edgar
  24. NOAA ESRL GMD Carbon Cycle, www.cmdl. noaa. gov/ccgg
  25. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B, vol. 85, pp. 421-426, 2006 [CrossRef]
  26. M. Murtz, “Breath diagnostics using laser spectroscopy,” Optics & Photonics News, January 2005, pp. 30-35, 2005

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited