Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 12,
  • Issue 1,
  • pp. 25-30
  • (2008)

Study on the Simulation Model for the Optimization of Optical Structures of Edge-lit Backlight for LCD Applications

Open Access Open Access

Abstract

The optical performances of 15-inch edge-lit backlight were simulated by using a Monte Carlo ray-tracing technique. The backlight model was built by combining a wedge-type light guide plate, a diffuser sheet, a tubular fluorescent lamp with a lamp reflector, and two crossed prism sheets. Angular distributions of the luminance on each optical component obtained from simulation were consistent with those obtained from experiments on a real 15-inch backlight. The constructed backlight model was used to evaluate the optical performances of a micro-pyramid film. It was found that the on-axis luminance gain on the pyramid film is higher than that on one prism film but much lower than that on the two crossed prism films. These results suggest that a reliable simulation model can be used to develop new hybrid films and to optimize the optical structure of edge-lit backlight in order to reduce the developmental period.

© 2008 Optical Society of Korea

PDF Article
More Like This
Edge-lit LCD backlight unit for 2D local dimming

Gun-Wook Yoon, Seok-Won Bae, Yong-Bok Lee, and Jun-Bo Yoon
Opt. Express 26(16) 20802-20812 (2018)

Edge/direct-lit hybrid mini-LED backlight with U-grooved light guiding plates for local dimming

Enguo Chen, Ju Guo, Zongzhao Jiang, Qiongxin Shen, Yun Ye, Sheng Xu, Jie Sun, Qun Yan, and Tailiang Guo
Opt. Express 29(8) 12179-12194 (2021)

High luminance hybrid light guide plate for backlight module application

Jui-Wen Pan and Chen-Wei Fan
Opt. Express 19(21) 20079-20087 (2011)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved