OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 13, Iss. 3 — Sep. 25, 2009
  • pp: 321–329

The Advent of Laser Therapies in Dermatology and Urology: Underlying Mechanisms, Recent Trends and Future Directions

Ho Lee, Yeon-Uk Jeong, and Kin F. Chan  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 13, Issue 3, pp. 321-329 (2009)


View Full Text Article

Acrobat PDF (504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Following their applications in cardiology, ophthalmology and dentistry among others, the advent of lasers in dermatology and urology had become the success story of the past decade. Laser-assisted treatments in dermatology and urology are mainly based on the laser-induced tissue injury/coagulation and/or ablation, depending upon the desirable clinical endpoint. In this review, we discussed the underlying mechanisms of the laser induced tissue ablation. In any medical laser application, the controlled thermal injury and coagulation, and the extent of ablation, if required, are critical. The laser thermal mechanism of injury is intricately related to the selective absorption of light and its exposure duration, similarly to the laser induced ablation. The laser ablation mechanisms were categorized into four different categories (the photo-thermally induced ablation, the photo-mechanically induced ablation, the plasma induced ablation and the photoablation) and their fundamentals are herein described. The brief history of laser treatment modality in dermatology and urology are summarized.

© 2009 Optical Society of Korea

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.1870) Medical optics and biotechnology : Dermatology
(170.7230) Medical optics and biotechnology : Urology

History
Original Manuscript: June 26, 2009
Revised Manuscript: August 24, 2009
Manuscript Accepted: August 25, 2009
Published: September 25, 2009

Citation
Ho Lee, Yeon-Uk Jeong, and Kin F. Chan, "The Advent of Laser Therapies in Dermatology and Urology: Underlying Mechanisms, Recent Trends and Future Directions," J. Opt. Soc. Korea 13, 321-329 (2009)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-13-3-321


Sort:  Year  |  Journal  |  Reset

References

  1. S. L. Jacques, "Laser-tissue interactions: photochemical, photothermal, and photo mechanical," Surg. Clin. North Am. 72, 531-558 (1992)
  2. A. J. Welch and M. J. C. van Gemert, Optical-thermal Response of Laser-irradiated Tissue (Plenum Press, New York, USA, 1995), Chapter 21-25
  3. M. H. Niemz, Laser-tissue Interactions: Fundamental and Applications (Springer, Berlin, Germany, 1996)
  4. K. F. Chan, "Pulsed infrared laser ablation and clinical applications," Ph.D. Dissertation, Univ. Texas Austin (2000)
  5. H. Lee, "Pulsed laser-induced material ablation and its clinical applications," Ph.D. Dissertation, Univ. Texas Austin (2000)
  6. J. S. Nelson,"In this issue. Dermatologic laser surgery," Lasers Surg. Med. 26, 105-107 (2000) [CrossRef]
  7. M. B. T. Alora and R. R. Anderson, "Recent developments in cutaneous lasers," Lasers Surg. Med. 26, 108-118 (2000) [CrossRef]
  8. M. Sato, M. Ishihara, T. Arai, T. Asazuma, T. Kikuchi, T. Hayashi, T. Yamada, M. Kikuchi, and K. Fujikawa, "Use of a new ICG-dye-enhanced diode laser for percutaneous laser disc decompression," Lasers Surg. Med. 29, 282-287 (2001) [CrossRef]
  9. J. G. Sulewski, "Historical survey of laser dentistry," Dent. Clin. North Am. 44, 717-752 (2000)
  10. B. M. Lippert, S. Gottschlich, C. Kulkens, B. J. Fol, H. Rudert, and J. A. Werner, "Experimental and clinical results of Er:YAG laser stapedotomy," Lasers Surg. Med. 28, 11-17 (2001) [CrossRef]
  11. P. Janda, R. Sroka, R. Baumgartner, G. Grevers, and A. Leunig, "Laser treatment of hyperplastic inferior nasal turbinates: a review," Lasers Surg. Med. 28, 404-413 (2001) [CrossRef]
  12. K. F. Chan, T. J. Pfefer, J. M. H. Teichman, and A. J. Welch, "A perspective on laser lithotripsy: the fragmentation processes," J. Endourol. 15, 257-273 (2001) [CrossRef]
  13. E. V. Ross, Y. Domankevitz, M. Skrobal, and R. R. Anderson, "Effects of <TEX>$CO_2$</TEX> laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing," Lasers Surg. Med. 19, 123-129 (1996) [CrossRef]
  14. T. J. Pfefer, B. Choi, G. Vargas, K. M. McNally, and A. J. Welch, "Pulsed laser-induced thermal damage in whole blood," T. ASME. J. Biomech. Eng. 122, 196-202 (2000) [CrossRef]
  15. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt. 36, 402-415 (1997) [CrossRef]
  16. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, "The thermoelastic basis of short pulsed laser ablation of biological tissue," Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995) [CrossRef]
  17. J. T. Walsh and T. F. Deutsch, "Pulsed <TEX>$CO_2$</TEX> laser ablation of tissue: effect of mechanical properties," IEEE Trans. Biomed. Eng. 36, 1195-1201 (1989) [CrossRef]
  18. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Mechanism of laser ablation for aqueous media irritated under confined-stress conditions," J. Appl. Phys. 78, 1281-1290 (1995) [CrossRef]
  19. J. T. Walsh and T. F. Deutsch, "Pulsed <TEX>$CO_2$</TEX> laser tissue ablation: measurement of the ablation rate," Lasers Surg. Med. 8, 264-275 (1988) [CrossRef]
  20. B. Majaron, P. Plestenjak, and M. Lukac, "Thermomechanical laser ablation of soft biological tissue: modeling the micro-explosions," Appl. Phys. B 69, 71-80 (1999) [CrossRef]
  21. J. P. Cummings and J. T. Walsh, "Tissue tearing caused by pulsed laser-induced ablation pressure," Appl. Opt. 32, 494-503 (1993) [CrossRef]
  22. R. Kelly and A. Miotello, "Comments on explosive mechanisms of laser sputtering," Appl. Surf. Sci. 96-98, 205-215 (1996) [CrossRef]
  23. E. E. B. Campbell, D. Ashkenasi, and A. Rosenfeld, "Ultra-short-pulse laser irradiation and ablation of dielectrics," Mater. Sci. Forum. 301, 123-144 (1999) [CrossRef]
  24. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP Press, New York, USA, 1993)
  25. A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, "Intraocular Nd:YAG laser surgery: lighttissue interaction, damage range, and reduction of collateral effects," IEEE J. Quantum Electron. 26, 2240-2260 (1990) [CrossRef]
  26. S. P. Dretler, "Laser lithotripsy: a review of 20 years of research and clinical applications," Lasers Surg. Med. 8, 341-356 (1988) [CrossRef]
  27. K. Rink, G. Delacretaz, and R. P. Salathe, "Fragmentation process of current laser lithotriptors," Lasers Surg. Med. 16, 134-146 (1995) [CrossRef]
  28. D. Baurele, Laser Processing and Chemistry (Springer, Berlin, Germany, 1996), Chapter 6
  29. P. Nelson, P. Veyrie, M. Berry, and Y. Durand, "Experimental and theoretical studies of air breakdown by intense pulse of light," Phys. Lett. 13, 226-228 (1964) [CrossRef]
  30. D. W. Fradin, N. Bloembergen, and J. P. Letellier, "Dependence of laser-induced breakdown field strengthon pulse duration," Appl. Phys. Lett. 22, 635-637 (1973) [CrossRef]
  31. J. P. Ready, Effects of High-power Laser Radiation (Academic, New York, USA, 1971), pp. 133-143
  32. J. P. Ready, Effects of High-power Laser Radiation (Academic, New York, USA, 1971), pp. 215-217
  33. A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. Soc. Photo. Opt. Instrum. Eng. 4633A, 23-37 (2002)
  34. A. Vogel, K. Nahen, and D. Theisen, "Plasma formation in water by picosecond and nanosecond Nd:YAG laserpulses. I. Optical breakdown at threshold and superthreshold irradiance," IEEE J. Quantum Electron. 2, 847-860 (1996) [CrossRef]
  35. P. P. Pronko, P. A. VanRompay, C. Horvath, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998) [CrossRef]
  36. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, "Femtosecond optical breakdown in dielectrics,"Phys. Rev. Lett. 80, 4076-4079 (1998) [CrossRef]
  37. A. C. Tien, S. Bakus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999) [CrossRef]
  38. M. Bass and H. H. Barrett, "Avalanche breakdown and the probabilistic nature of laser-induced damage," IEEE J. Quantum Electron. QE-18, 338-343 (1983)
  39. D. W. Fradin, E. Yablonovitch, and M. Bass, "Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 <TEX>$\mu$</TEX>m," Appl. Opt. 12, 700-709 (1983) [CrossRef]
  40. J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, "Ultrashort pulse lasers for hard tissue ablation," IEEE J. Quantum Electron. 2, 790-800 (1996) [CrossRef]
  41. G. J. R. Spooner, T. Juhasz, I. R. Traub, G. Djotyan, C. Horvath, Z. Sacks, G. Marre, D. Miller, A. R. Williams, and R. Kurtz, "Commercial and biomedical applications of ultrafast lasers," Proc. Soc. Photo. Opt. Instrum. Eng. 3934, 62-72 (2000)
  42. T. Szorenyi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, "Chemical analysis of <TEX>$a-CN_x$</TEX> thin films synthesized by nanosecond and femtosecond pulsed laser deposition," Appl. Phys. A 69, 941-944 (1999) [CrossRef]
  43. M. H. Niemz, "Cavity preparation with the Nd:YLF picosecond laser," J. Dent. Res. 74, 194-199 (1995) [CrossRef]
  44. A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, "Subpicosecond laser ablation of dental enamel," J. Appl. Phys. 92, 2153-2158 (2002) [CrossRef]
  45. D. L. Matthews, L. Da Silva, B. M. Kim, and J. Marion, "Surgical applications of ultrashort pulse laser technology," in Proc. Advanced Solid State Laser Annual Meeting (Boston, MA, USA, 1999), TuA1
  46. R. Srinivasan, P. E. Dyer, and B. Braren, "Far-ultraviolet laser ablation of the cornea: photoacoustic studies," Lasers Surg. Med. 6, 514-519 (1987) [CrossRef]
  47. C. A. Pxuliato, D. Stern, R. R. Kreuger, and E. R. Mandel, "High-speed photography of excimer laser ablation of the cornea," Arch. Ophthal. 105, 1255-1259 (1987)
  48. R. R. Anderson and J. A. Parrish, "Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation," Science 220, 524-527 (1983) [CrossRef]
  49. S. Dahan, J. M. Lagarde, V. Turlier, L. Courrech, and S. Mordon, "Treatment of neck lines and forehead rhytids clinical study combined with the measurement of the thickness and the mechanical properties of the skin," Dermatol. Surg. 30, 872-879 (2004) [CrossRef]
  50. D. Mains, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, "Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury," Lasers Surg. Med. 34, 426-438 (2004) [CrossRef]
  51. V. P. Bedi, K. F. Chan, R. K. Sink, B. M. Hantash, G. S. Herron, Z. Rahman, S. K. Struck, and C. B. Zachary, "The effects of pulse energy variations on the dimensions of microscopic thermal treatment zones in nonablative fractional resurfacing," Lasers Surg. Med. 39, 145-155 (2007) [CrossRef]
  52. B. M. Hantash, V. P. Bedi, K. F. Chan, and C. B. Zachary, "Ex vivo histological characterization of a novel ablative fractional resurfacing device," Lasers Surg. Med. 39, 87-95 (2007) [CrossRef]
  53. B. M. Hantash, V. P. Bedi, V. Sudireddy, S. K. Struck, G. S. Herron, and K. F. Chan, "Laser-induced transepidermal elimination of dermal content by fractional photothermolysis," J. Biomed. Opt. 11, 041115 (2006) [CrossRef]
  54. B. M. Hantash, V. P. Bedi, B. Kapadia, Z. Rahman, K. Jiang, H. Tanner, K. F. Chan, and C. B. Zachary, In vivo histological evaluation of a novel ablative " fractional resurfacing device," Lasers Surg. Med. 39, 96-107 (2007) [CrossRef]
  55. J. N. Kabalin, "Laser prostatectomy performed with a right angle firing neodymium:YAG laser fiber at 40 watts power setting," J. Urol. 150, 95-99 (1993)
  56. N. J. Barber and G. H. Muir, "High-power KTP laser prostatectomy: the new challenge to transurethral resection of the prostate," Curr. Opin. Urol. 14, 21-25 (2004) [CrossRef]
  57. R. Tooher, P. Sutherland, A. Costello, P. Gilling, G. Rees, and G. Maddern, "A systematic review of holmium laser prostatectomy for benign prostatic hyperplasia," J. Urol. 171, 1773-1781 (2004) [CrossRef]
  58. S. P. Dretler, "Laser lithotripsy: a review of 20 years of research and clinical applications," Lasers Surg. Med. 8, 341–356 (1988) [CrossRef]
  59. K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, "Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi," Lasers Surg. Med. 25, 22-37 (1999) [CrossRef]
  60. N. M. Fried, "Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94 microm," Lasers Surg. Med. 37, 53-58 (2005) [CrossRef]
  61. H. Lee, H. W. Kang, J. M. Teichman, J. Oh, and A. J. Welch, "Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy," Lasers Surg. Med. 38, 39–51 (2006) [CrossRef]
  62. H. Lee, J.-W. Yoon, Y.-D. Jung, J.-H. Kim, T. R. Robert, M. H. J. Teichman, and A. J. Welch, "Comparison of sapphire and germanium fibers for erbium: YAG lithotripsy," J. Opt. Soc. Korea 12, 309-313 (2008) [CrossRef]
  63. C. A. Chaney, Y. Yang, and M. Fried, "Hybrid germanium/ silica optical fibers for endoscopic delivery of erbium: YAG laser radiation," Lasers Surg. Med. 34, 5-11 (2004) [CrossRef]
  64. Y. Yang, C. A. Chaney, and N. M. Fried, "Erbium: YAG laser lithotripsy using hybrid germanium/silica optical fibers," J. Endourol. 18, 830-835 (2004) [CrossRef]
  65. T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of erbium:YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006) [CrossRef]
  66. K. Iwai, Y. W. Shi, K. Nito, Y. Matsuura, T. Kasai, M. Miyagi, S. Saito, Y. Arai, N. Ioritani, Y. Okagami, M. Nemec, J. Sulc, H. Jelinkova, M. Zavoral, O. Kohler, and P. Drlik, "Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap," Appl. Opt. 42, 2431-2435 (2003) [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited