OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea


  • Vol. 14, Iss. 2 — Jun. 25, 2010
  • pp: 163–169

Wafer-level Fabrication of Ball Lens by Cross-cut and Reflow of Wafer-bonded Glass on Silicon

Dong-Whan Lee, Jin-Kyung Oh, Jun-Seok Choi, Hyung-Jong Lee, and Woo-Nam Chung  »View Author Affiliations

Journal of the Optical Society of Korea, Vol. 14, Issue 2, pp. 163-169 (2010)

View Full Text Article

Acrobat PDF (1567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Novel wafer-level fabrication of a glass ball-lens is realized for optoelectronic applications. A Pyrex wafer is bonded to a silicon wafer and cross-cut into a square-tile pattern, followed by wet-etching of the underlying silicon. Cubes of Pyrex on the undercut silicon are then turned into ball shapes by thermal reflow, and separated from the wafer by further etching of the silicon support. Radial variation and surface roughness are measured to be less than ±3 µm and ±1 µm, respectively, for ball diameter of about 500 µm. A surface defect on the ball that is due to the silicon support is shown to be healed by using a silicon-optical-bench. Optical power-relay of the ball lens showed the maximum efficiency of 65% between two single-mode fibers on the silicon-optical-bench.

© 2010 Optical Society of Korea

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(130.0130) Integrated optics : Integrated optics
(220.3630) Optical design and fabrication : Lenses
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: April 13, 2010
Revised Manuscript: May 13, 2010
Manuscript Accepted: May 20, 2010
Published: June 25, 2010

Dong-Whan Lee, Jin-Kyung Oh, Jun-Seok Choi, Hyung-Jong Lee, and Woo-Nam Chung, "Wafer-level Fabrication of Ball Lens by Cross-cut and Reflow of Wafer-bonded Glass on Silicon," J. Opt. Soc. Korea 14, 163-169 (2010)

Sort:  Year  |  Journal  |  Reset


  1. J. Gates, D. Muehlner, M. Cappuzzo, M. Fishteyn, L. Gomez, G. Henein, E. Laskowski, I. Ryazansky, J. Shmulovich, D. Syvertsen, and A. White, “Hybrid integrated silicon optical bench planar lightguide circuits,” in Proc. ElectronicComponents and Technology Conference (Seattle, WA, USA, May 1998), pp. 551-559.
  2. D. W. Sherrer, N. Brese, J. Fisher, C. Gaebe, N. A. Heiks, J. Getz, J. Rasnake, and E. S. Simon, “Wafer-level packaging technology for 10Gbps TOSAs,” in Proc. Electronic Components and Technology Conference (Lake Buena Vista,FL, USA, May 2005), pp. 1325-1332.
  3. L.-S. Huang, S.-S. Lee, E. Motamedi, M. C. Wu, and C.-J. Kim, “MEMS packaging for micro mirror switches,” in Proc. Electronic Components and Technology Conference (Seattle, WA, USA, May 1998), pp. 592-597.
  4. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281-1284 (1988). [CrossRef]
  5. S.-K. Lee, M.-G. Kim, K.-W. Joo, S.-M. Shin, and J.-H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A: Pure Appl. Opt. 10, 1-7 (2008).
  6. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28, 731-733 (2003). [CrossRef]
  7. P. Merz, H. J. Quenzerl, H. Bemt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proc. Transducers 03, The 12th International Conference on Solid Stale Sensors, Actuators and Microsystems (Boston, MA, USA, Jun. 2003), pp. 258-261.
  8. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Exp. 17, 6283-6292 (2009). [CrossRef]
  9. D.-H. Cha, Y. Hwang, J.-H. Kim, and H.-J. Kim, “Transcription characteristics of mold surface topography in the molding of aspherical glass lenses,” J. Opt. Soc. Korea 13, 213-217 (2009). [CrossRef]
  10. L. Hao, S. Bangren, W. Jijiang, G. Lijun, and L. Aimei, “Fabrication of gradient refractive index ball lenses using the method of combination of ion exchanging and sagging,” Opt. Comm. 276, 310-316 (2007). [CrossRef]
  11. A. Yamagata, F. Ishizaki, and K. Sugizaki, “Globular glass manufacturing apparatus and method for manufacturing the globular glass,” U.S. Patent 0132752 A1 (2005).
  12. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacomapplication,” IEEE Trans. on Components, Packaging, andManufacturing Technology B21, 7-15 (1997).
  13. H. Yang, C.-K. Chao, C.-P. Lin, and S.-C. Shen, “Microball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277-282 (2003). [CrossRef]
  14. C.-T. Pan, C.-H. Chien, and C.-C. Hsieh, “Technique of microball lens formation for efficient optical coupling,” Appl. Opt. 43, 5939-5946 (2004). [CrossRef]
  15. F. Pigeon, B. Biasse, and M. Zussy, “Low-temperature Pyrex glass wafer direct bonding,” Electron. Lett. 31, 792-793 (1995). [CrossRef]
  16. G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. 40, 3946-3949 (1969). [CrossRef]
  17. M. Alexe and U. Gosele, Wafer Bonding, Application and Technology (Springer Verlag, Berlin, Germany, 2004).
  18. M. Bua, T. Melvin, G. J. Ensell, J. S. Wilkinson, and A. G. R. Evans, “A new masking technology for deep glass etching and its microfluidic application,” Sens. Actuators A 115, 476-482 (2004). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited