OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 14, Iss. 2 — Jun. 25, 2010
  • pp: 65–76

Development of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing

Kyung-Min Byun  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 14, Issue 2, pp. 65-76 (2010)


View Full Text Article

Acrobat PDF (2989 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Plasmonic-based biosensing technologies have been successfully commercialized and applied for monitoring various biomolecular interactions occurring at a sensor surface. In particular, the recent advances in nanofabrication methods and nanoparticle syntheses provide a new route to overcome the limitations of a conventional surface plasmon resonance biosensor, such as detection limit, sensitivity, selectivity, and throughput. In this paper, optical and physical properties of plasmonic nanostructures and their contributions to a realization of enhanced optical detection platforms are reviewed. Following vast surveys of the exploitation of metallic nanostructures supporting localized field enhancement, we will propose an outlook for future directions associated with a development of new types of plasmonic sensing substrates

© 2010 Optical Society of Korea

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.0310) Thin films : Thin films
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

History
Original Manuscript: May 25, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 8, 2010
Published: June 25, 2010

Citation
Kyung-Min Byun, "Development of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing," J. Opt. Soc. Korea 14, 65-76 (2010)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-14-2-65


Sort:  Year  |  Journal  |  Reset

References

  1. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,”Nature 332, 615-617 (1988). [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  3. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Germany, 1988).
  4. M. Malmqvist, “Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol. 5, 282-286 (1993). [CrossRef]
  5. T. Akimoto, S. Sasaki, K. Ikebukuro, and I. Karube, “Effect of incident angle of light on sensitivity and detection limit for layers of antibody with surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 15, 355-362 (2000). [CrossRef]
  6. B. Johnsson, S. Lofas, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Chem. 198, 268-277 (1991).
  7. R. Karlsson and A. Falt, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200, 121-133 (1997). [CrossRef]
  8. A. L. Plant, M. Brigham-Burke, E. C. Petrella, and D. J. O’Shannessy, “Phospholipid/alkanethiol bilayers for cellsurface receptor studies by surface plasmon resonance,” Anal. Biochem. 226, 342-348 (1995). [CrossRef]
  9. S. A. Kim, K. M. Byun, J. Lee, J. H. Kim, D.-G. A. Kim, H. Baac, M. L. Shuler, and S. J. Kim, “Optical measurement of neural activity using surface plasmon resonance,” Opt. Lett. 33, 914-916 (2008). [CrossRef]
  10. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73, 1-7 (2001). [CrossRef]
  11. S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, and M. L. Shuler, “Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor,” J. Opt. Soc. Korea 13, 392-397 (2009). [CrossRef]
  12. B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10, 1-4 (1995). [CrossRef]
  13. X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106-112 (2002). [CrossRef]
  14. H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films 333, 82-87 (1998). [CrossRef]
  15. M. Piliarik and J. Homola, “Surface plasmon resonance sensors: approaching their limits?,” Opt. Exp. 17, 16505-16517 (2009). [CrossRef]
  16. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004). [CrossRef]
  17. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).
  18. S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10, 3427-3430 (1994). [CrossRef]
  19. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996). [CrossRef]
  20. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  21. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219-228 (2006). [CrossRef]
  22. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007). [CrossRef]
  23. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137-141 (2003). [CrossRef]
  24. E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid. Interf. Sci. 143, 513-526 (1991). [CrossRef]
  25. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Auenhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177-5183 (1998). [CrossRef]
  26. Y. Li, A. W. Wark, H. J. Lee, and R. M. Corn, “Singlenucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions,” Anal. Chem. 78, 3158-3164 (2006). [CrossRef]
  27. J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125-135 (2005). [CrossRef]
  28. X. Liu, Y. Sun, D. Song, Q. Zhang, Y. Tian, S. Bi, and H. Zhang, “Sensitivity-enhancement of wavelength-modulation surface plasmon resonance biosensor for human complement factor 4,” Anal. Biochem. 333, 99-104 (2004). [CrossRef]
  29. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B 54, 118-124 (1999). [CrossRef]
  30. E. F. A. de Vries, R. B. M. Schasfoort, J. van der Plas,and J. Greve, “Nucleic acid detection with surface plasmon resonance using cationic latex,” Biosens. Bioelectron. 9,509-514 (1994). [CrossRef]
  31. E. Fujii, T. Koike, K. Nakamura, S. Sasaki, K. Kurihara, D. Citterio, Y. Iwasaki, O. Niwa, and K. Suzuki, “Application of an absorption-based surface plasmon resonance principle to the development of SPR ammonium ion and enzyme sensors,” Anal. Chem. 74, 6106-6110 (2002). [CrossRef]
  32. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000). [CrossRef]
  33. E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105, 11159-11168 (2001). [CrossRef]
  34. T. Zhu, X. Zhang, J. Wang, X. Fu, and Z. Liu, “Assembling colloidal Au nanoparticles with functionalized self-assembled monolayers,” Thin Solid Films 327-329, 595-598 (1998). [CrossRef]
  35. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanoclusterembedded dielectric film,” Biosens. Bioelectron. 19, 1465-1471(2004). [CrossRef]
  36. J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77, 4282-4285 (2005). [CrossRef]
  37. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494-521 (2008). [CrossRef]
  38. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986). [CrossRef]
  39. L. Li and C. W. Haggans, “Convergence of the coupledwave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184-1189 (1993). [CrossRef]
  40. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Exp. 13, 3737-3742 (2005). [CrossRef]
  41. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowiremediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006). [CrossRef]
  42. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24, 522-529 (2007). [CrossRef]
  43. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures,” J. Opt. Soc. Am. A 26, 1027-1034 (2009). [CrossRef]
  44. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001). [CrossRef]
  45. L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006). [CrossRef]
  46. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004). [CrossRef]
  47. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007). [CrossRef]
  48. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009). [CrossRef]
  49. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094 (2007). [CrossRef]
  50. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26, 1472-1478 (2008). [CrossRef]
  51. A. J. Haes, S. Zou, G. C. Schatz, and R. P. van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004). [CrossRef]
  52. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581-583 (1983). [CrossRef]
  53. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957-960 (1982). [CrossRef]
  54. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, USA, 1998).
  55. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” J. Phys. Chem. B 103, 4212-4217 (1999). [CrossRef]
  56. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Exp. 6, 213-219 (2000). [CrossRef]
  57. E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, “Synthesis and optical properties of “Branched” gold nanocrystals,” Nano Lett. 4, 327-330 (2004). [CrossRef]
  58. A. J. Haes and R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596-10604 (2002). [CrossRef]
  59. J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, and R. P. van Duyne, “Resonance surface plasmon spectroscopy:low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128, 11004-11005 (2006). [CrossRef]
  60. A. D. McFarland and R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057-1062 (2003). [CrossRef]
  61. A. Roucoux, J. Schulz, and H. Patin, “Reduced transition metal colloids: a novel family of reusable catalysts?,” Chem. Rev. 102, 3757-3778 (2002). [CrossRef]
  62. Y. Xiong, H. Cai, B. J. Wiley, J. Wang, M. J. Kim, and Y. Xia, “Synthesis and mechanistic study of palladium nanobars and nanorods,” J. Am. Chem. Soc. 129, 3665-3675(2007). [CrossRef]
  63. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389-1393 (2001). [CrossRef]
  64. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787-796 (1989). [CrossRef]
  65. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661-6664 (1997). [CrossRef]
  66. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257-264 (2001). [CrossRef]
  67. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243-247 (1998). [CrossRef]
  68. T. Ohno, J. A. Bain, and T. E. Schlesinger, “Observation of geometrical resonance in optical throughput of very small aperture lasers associated with surface plasmons,” J. Appl. Phys. 101, 083107 (2007). [CrossRef]
  69. C. L. Haynes and R. P. van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of sizedependent nanoparticle optics,” J. Phys. Chem. B 105, 5599-5611 (2001). [CrossRef]
  70. J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Mater. Today 8, 50-56 (2005).
  71. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  72. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007). [CrossRef]
  73. H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104-2108 (2006). [CrossRef]
  74. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049-1057 (2008). [CrossRef]
  75. A. de Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094-4100 (2007). [CrossRef]
  76. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813-4815 (2004). [CrossRef]
  77. P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37, 37-47 (2005). [CrossRef]
  78. J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401-405 (1995). [CrossRef]
  79. K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523, 165-170 (2004). [CrossRef]
  80. M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003). [CrossRef]
  81. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 337, 528-539 (2003).
  82. P. Stocker, B. Menges, U. Langbein, and S. Mittler, “Multimode waveguide mode surface plasmon coupling: a sensitivity and device realizability study,” Sens. Actuators A 116, 224-231 (2004). [CrossRef]
  83. C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69, 4939-4947 (1997). [CrossRef]
  84. A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Comm.150, 5-8 (1998). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited