OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea


  • Vol. 14, Iss. 2 — Jun. 25, 2010
  • pp: 77–89

Applications of Digital Holography in Biomedical Microscopy

Myung-K. Kim  »View Author Affiliations

Journal of the Optical Society of Korea, Vol. 14, Issue 2, pp. 77-89 (2010)

View Full Text Article

Acrobat PDF (4371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

© 2010 Optical Society of Korea

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(090.1995) Holography : Digital holography

Original Manuscript: May 17, 2010
Revised Manuscript: June 7, 2010
Manuscript Accepted: June 8, 2010
Published: June 25, 2010

Myung-K. Kim, "Applications of Digital Holography in Biomedical Microscopy," J. Opt. Soc. Korea 14, 77-89 (2010)

Sort:  Year  |  Journal  |  Reset


  1. W. Jueptner and U. Schnars, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin Heidelberg, Germany, 2005).
  2. M. K. Kim, L. F. Yu, and C. J. Mann, “Digital holography and multi-wavelength interference techniques,” in Digital Holography and Three Dimensional Display: Principles and Applications, T. C. Poon, ed. (Springer, USA, 2006), pp. 51-72.
  3. D. Gabor, “A new microscope principle,” Nature 161, 777-778 (1948). [CrossRef]
  4. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454-487 (1949).
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963). [CrossRef]
  6. C. Knox, “Holographic microscopy as a technique for recording dynamic microscopic subjects,” Science 153, 989-990 (1966). [CrossRef]
  7. S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” Journal of the Acoustical Society of America 51, 1904-1920 (1972). [CrossRef]
  8. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  9. U. Schnars and W. Juptner, “Direct recording of holograms by a Ccd target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef]
  10. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Exp. 9, 294-302 (2001). [CrossRef]
  11. C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 10 (2006). [CrossRef]
  12. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). [CrossRef]
  13. J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). [CrossRef]
  14. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003). [CrossRef]
  15. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2 pi ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141-1143 (2003). [CrossRef]
  16. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef]
  17. F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131-1139 (2004). [CrossRef]
  18. F. Dubois, L. Joannes, and J. C. Legros, “Improved threedimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999). [CrossRef]
  19. T. C. Poon, “Scanning holography and two-dimensional image-processing by acoustooptic 2-pupil synthesis,” J. Opt. Soc. Am. A 2, 521-527 (1985). [CrossRef]
  20. T. Kim and T. C. Poon, “Autofocusing in optical scanning holography,” Appl. Opt. 48, H153-H159 (2009). [CrossRef]
  21. T. Kim and T. C. Poon, “Experiments of depth detection and image recovery of a remote target using a complex hologram,” Opt. Eng. 43, 1851-1855 (2004). [CrossRef]
  22. T. C. Poon, “Optical scanning holography - a review of recent progress,” J. Opt. Soc. Korea 13, 406-415 (2009). [CrossRef]
  23. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “Highresolution quantitative phase-contrast microscopy by digital holography,” Opt. Exp. 13, 8693-8698 (2005). [CrossRef]
  24. T. Colomb, J. Kuhn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Exp. 14, 4300-4306 (2006). [CrossRef]
  25. M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008). [CrossRef]
  26. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228-232(2009). [CrossRef]
  27. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006). [CrossRef]
  28. A. Ligresti, L. De Petrocellis, D. H. P. de la Ossa, R. Aberturas, L. Cristino, A. S. Moriello, A. Finizio, M. E. Gil, A. I. Torres, J. Molpeceres, and V. Di Marzo, “Exploiting nanotechnologies and TRPV1 channels to investigate theputative anandamide membrane transporter,” PLoS One 5, e10239 (2010). [CrossRef]
  29. K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motilitycontrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Exp. 15, 14057-14064 (2007). [CrossRef]
  30. L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Exp. 17, 12031-12038 (2009). [CrossRef]
  31. C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47, 5305-5314 (2008). [CrossRef]
  32. W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001). [CrossRef]
  33. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006). [CrossRef]
  34. R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187-2197 (2000). [CrossRef]
  35. J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef]
  36. E. Malkiel, I. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657-3666 (2003). [CrossRef]
  37. S. Schedin, G. Pedrini, and H. J. Tizian, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853-2857 (2000). [CrossRef]
  38. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008). [CrossRef]
  39. D. Gabor and W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56, 849-858 (1966). [CrossRef]
  40. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001). [CrossRef]
  41. A. Stern and B. Javidi, “Space-bandwith conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736-741 (2008). [CrossRef]
  42. L. Xu, X. Y. Peng, Z. X. Guo, J. M. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Exp. 13, 2444-2452 (2005). [CrossRef]
  43. B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917-927 (2005). [CrossRef]
  44. T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771-778 (2002). [CrossRef]
  45. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929-5935 (2000). [CrossRef]
  46. C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812-4820 (1999). [CrossRef]
  47. J. W. Goodman, Introduction to Fourier Optics, 2nd ed.(McGraw Hill, Boston, USA, 1996).
  48. J. C. Li, P. Tankam, Z. J. Peng, and P. Picart, “Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572-574 (2009). [CrossRef]
  49. D. Y. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, “High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms,” Appl. Opt. 47, D12-D20 (2008). [CrossRef]
  50. L. F. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005). [CrossRef]
  51. S. J. Jeong and C. K. Hong, “Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method,” Appl. Opt. 47, 3064-3071 (2008). [CrossRef]
  52. E. Wolf, “Determination of amplitude and phase of scattered fields by holography,” J. Opt. Soc. Am. 60, 18-20(1970). [CrossRef]
  53. L. Onural, “Diffraction from a wavelet point-of-view,” Opt. Lett. 18, 846-848 (1993). [CrossRef]
  54. M. Brunel, S. Coetmellec, D. Lebrun, and K. A. Ameur, “Digital phase contrast with the fractional Fourier transform,” Appl. Opt. 48, 579-583 (2009). [CrossRef]
  55. Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47, 552-557 (2009). [CrossRef]
  56. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Exp. 15, 13640-13648 (2007). [CrossRef]
  57. N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in offaxis digital holography through nonlinear filtering,” Appl. Opt. 48, H186-H195 (2009). [CrossRef]
  58. H. Cho, J. K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Optics and Laser Technology 41, 741-745 (2009). [CrossRef]
  59. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000). [CrossRef]
  60. L. F. Yu and M. K. Kim, “Wavelength scanning digital interference holography for variable tomographic scanning,” Opt. Exp. 13, 5621-5627 (2005). [CrossRef]
  61. L. F. Yu and M. K. Kim, “Variable tomographic scanning with wavelength scanning digital interference holography,” Opt. Comm. 260, 462-468 (2006). [CrossRef]
  62. Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817-824 (2008). [CrossRef]
  63. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Exp. 14, 5895-5908 (2006). [CrossRef]
  64. L. F. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett. 31, 897-899 (2006). [CrossRef]
  65. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90,041104 (2007). [CrossRef]
  66. S. Shin and Y. Yu, “Three-dimensional information and refractive index measurement using a dual-wavelength digital holographic microscope,” J. Opt. Soc. Korea 13, 173-177 (2009). [CrossRef]
  67. N. Warnasooriya and M. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56, 67-74 (2009). [CrossRef]
  68. N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Exp. 15, 9239-9247 (2007). [CrossRef]
  69. C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-inone multifunctional optical microscope with a single holographic measurement,” Opt. Eng. 47, 087001 (2008). [CrossRef]
  70. A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203-3210 (2008). [CrossRef]
  71. W. M. Ash, L. G. Krzewina, and M. K. Kim, “Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy,” Appl. Opt. 48, H144-H152 (2009). [CrossRef]
  72. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef]
  73. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Exp. 7, 305-310 (2000). [CrossRef]
  74. J. W. You, S. Kim, and D. Kim, “High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer,” Opt. Exp. 16, 21022-21031 (2008). [CrossRef]
  75. J. Kuhn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34, 653-655(2009). [CrossRef]
  76. Y. Jeon and C. K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009). [CrossRef]
  77. S. J. Jeong and C. K. Hong, “Illumination-angle-scanning digital interference holography for optical section imaging,” Opt. Lett. 33, 2392-2394 (2008). [CrossRef]
  78. W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171-173 (2008). [CrossRef]
  79. T. Kim, “Optical sectioning by optical scanning holography and a Wiener filter,” Appl. Opt. 45, 872-879 (2006). [CrossRef]
  80. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214 (2000). [CrossRef]
  81. M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19, 074010 (2008). [CrossRef]
  82. M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48, H9-H15 (2009). [CrossRef]
  83. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517-1520 (1987). [CrossRef]
  84. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  85. S. C. Kuo, “Using optics to measure biological forces and mechanics,” Traffic 2, 757-763 (2001). [CrossRef]
  86. M. W. Berns, “Laser scissors and tweezers,” Scientific American 278, 62-67 (1998).
  87. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Review of Scientific Instruments 69, 1974-1977 (1998). [CrossRef]
  88. D. J. Carnegie, D. J. Stevenson, M. Mazilu, F. Gunn-Moore, and K. Dholakia, “Guided neuronal growth using optical line traps,” Opt. Exp. 16, 10507-10517 (2008). [CrossRef]
  89. D. C. Clark, L. Krzewina, and M. K. Kim, “Quantitative analysis by digital holography of the effect of optical pressure on a biological cell,” in Proc. OSA DH Topical Meeting (Miami, FL, USA, 2010), paper JMA23.
  90. M. C. Potcoava, L. Krzewina, and M. K. Kim, “Threedimensional tracking of optically trapped particles by digital Gabor holography,” in Proc. OSA DH (Miami, FL, USA, 2010), paper JMA35.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited