OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea


  • Vol. 14, Iss. 3 — Sep. 1, 2010
  • pp: 215–220

Aerosol Observation with Raman LIDAR in Beijing, China

Chen-Bo Xie, Jun Zhou, Nobuo Sugimoto, and Zi-Fa Wang  »View Author Affiliations

Journal of the Optical Society of Korea, Vol. 14, Issue 3, pp. 215-220 (2010)

View Full Text Article

Acrobat PDF (1765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 <TEX>${\mu}m$</TEX> in dust case, a bi-mode with fine particle centered at 0.2 <TEX>${\mu}m$</TEX> and coarse particle at 2 <TEX>${\mu}m$</TEX> was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

© 2010 Optical Society of Korea

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.3640) Remote sensing and sensors : Lidar
(300.6450) Spectroscopy : Spectroscopy, Raman

Original Manuscript: June 28, 2010
Revised Manuscript: July 20, 2010
Manuscript Accepted: July 26, 2010
Published: September 25, 2010

Chen-Bo Xie, Jun Zhou, Nobuo Sugimoto, and Zi-Fa Wang, "Aerosol Observation with Raman LIDAR in Beijing, China," J. Opt. Soc. Korea 14, 215-220 (2010)

Sort:  Year  |  Journal  |  Reset


  1. T. F. Eck, B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B. Chen, B. Chatenet, L. Gomes, X. Y. Zhang, S. C. Tsay, Q. Ji, D. Giles, and I. Slutsker, “Columnar aerosol optical properties at AERONET sites in central Eastern Asia and aerosol transport to the tropical Mid-Pacific,” J. Geophys. Res. 110, D06202, doi:10.1029/2004JD005274 (2005). [CrossRef]
  2. T. Cheng, H. Wang, Y. Xu, H. Li, and L. Tian, “Climatology of aerosol optical properties in Northern China,” Atmos. Environ. 40, 1495-1509 (2006). [CrossRef]
  3. X. A. Xia, H. B. Chen, P. C. Wang, W. X. Zhang, P. Goloub, B. Chatenet, T. F. Eck, and B. N. Holben, “Variation of column-integrated aerosol properties in a Chinese urban region,” J. Geophys. Res. 111, D05204, doi:10.1029/2005JD006203 (2006). [CrossRef]
  4. M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, M. Hu, and Y. Zhang, “Particle backscatter, extinction, and LIDAR ratio profiling with Raman LIDAR in South and North China,” Appl. Opt. 46, 6302-6308 (2007). [CrossRef]
  5. C. Xie, T. Nishizawa, N. Sugimoto, I. Matsui, and Z. Wang, “Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China,” Appl. Opt. 47, 4945-4951 (2008). [CrossRef]
  6. A. Ansmann, R. Engelmann, D. Althausen, U. Wandinger, M. Hu, Y. Zhang, and Q. He, “High aerosol load over the pearl river delta, China, observed with Raman LIDAR and sun photometer,” Geophys. Res. Lett. 32, L13815 (2005). [CrossRef]
  7. Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-tobackscatter ratio of Asian dust observed with high-spectralresolution LIDAR and Raman LIDAR,” Appl. Opt. 41, 2760-2767 (2002). [CrossRef]
  8. T. Murayama and M. Sekiguchi, “Intercomparison of aerosol optical properties observed by LIDAR, sun/sky photometers and surface in situ measurements during Asian dust event in Tokyo, Japan,” in Proc. The 24th International Laser Radar Conference (Boulder-Colorado, USA, June 2008), pp. 943-946.
  9. X. Yu, B. Zhu, and M. Zhang, “Seasonal variability of aerosol optical properties over Beijing,” Atmos. Environ. 43, 4095-4101 (2009). [CrossRef]
  10. H. Che, G. Shi, A. Uchiyama, A. Yamazaki, H. Chen, P. Goloub, and X. Zhang, “Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China,” Atmos. Chem. Phys. 8, 3199-3214 (2008). [CrossRef]
  11. S. Kim, S. Yoon, J. Kim, and S. Kim, “Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET sun/sky radiometer measurements,” Atmos. Environ. 41, 1634-1651 (2007). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited