OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 14, Iss. 3 — Sep. 1, 2010
  • pp: 221–227

Measurement of Aerosol Parameters with Altitude by Using Two Wavelength Rotational Raman Signals

Im-Kang Song, Yong-Gi Kim, Sung-Hoon Baik, Seung-Kyu Park, Hyung-Ki Cha, Sung-Chul Choi, Chin-Man Chung, and Duk-Hyeon Kim  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 14, Issue 3, pp. 221-227 (2010)


View Full Text Article

Acrobat PDF (1570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Aerosol size distribution provides good information for predicting weather changes and understanding cloud formation. Aerosol extinction coefficient and backscattering coefficient are measured by many scientists, but these parameters depend not only on aerosol size but on aerosol concentrations. An algorithm has been developed to measure aerosol parameters such as <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX>m exponent, color ratio, and LIDAR ratio without any assumptions by using two wavelength rotational Raman LIDAR signals. These parameters are good indicators for the aerosol size. And we can find <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX>m exponent, color ratio, and LIDAR ratio under various weather conditions. Finally, it can be seen that the <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX>m exponent has an inverse relationship to the particle size of the aerosol and the color ratio is linearly dependent on the aerosol size. An <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX>m exponent from 1.2 to 3.1, a color ratio from 0.28 to 1.04, and a LIDAR ratio 66.9 sr at 355 nm and 32.6 sr at 532 nm near the cloud were obtained.

© 2010 Optical Society of Korea

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.2200) Scattering : Extinction
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: July 2, 2010
Revised Manuscript: August 25, 2010
Manuscript Accepted: August 30, 2010
Published: September 25, 2010

Citation
Im-Kang Song, Yong-Gi Kim, Sung-Hoon Baik, Seung-Kyu Park, Hyung-Ki Cha, Sung-Chul Choi, Chin-Man Chung, and Duk-Hyeon Kim, "Measurement of Aerosol Parameters with Altitude by Using Two Wavelength Rotational Raman Signals," J. Opt. Soc. Korea 14, 221-227 (2010)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-14-3-221


Sort:  Year  |  Journal  |  Reset

References

  1. K. H. Lee, J. E. Kim, Y. J. Kim, J. Kim, and W. Hoyningen-Huene, “Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003,” Atmos. Environ. 39, 85-99 (2005). [CrossRef]
  2. W. N. Chen, S. Y. Chang, C. C. K. Chou, and T. K. Chen, “Total scatter-to-backscatter ratio of aerosol derived from aerosol size distribution measurement,” Int. J. Environment and Pollution 37, 45-54 (2009). [CrossRef]
  3. P. B. Russell, R. W. Bergstrom, Y. Shinoznka, A. D. Clarke, P. F. Decarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, B. Holben, O. Dubovic, and A. Strawa, “Absorption Ǻngström exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. Discuss. 9, 21785-21817 (2009). [CrossRef]
  4. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie LIDAR measurement of aerosol in atmospheric profiles,” Opt. Lett. 17, 541-543 (1992). [CrossRef]
  5. V. Rizi, M. Larlori, G. Rocci, and G. Visconti, “Raman LIDAR observations of cloud liquid water,” Appl. Opt. 43, 6440-6453 (2004). [CrossRef]
  6. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter LIDAR,” Appl. Opt. 31, 7113-7131 (1992). [CrossRef]
  7. A. Angstrom, "On the atmospheric transmission of sun radiation and on dust in the atmosphere," Geogr. Ann. 11, 156-166 (1929). [CrossRef]
  8. D. G. Kaskaoutis and H. D. Kambezidis, “Comparison of the Angstrom parameters retrieval in different spectral ranges with the use of different techniques,” Meteorol. Atmos. Phys. 99, 233-246 (2008). [CrossRef]
  9. D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, “New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients,” Appl. Phys. B 82, 1-4 (2006). [CrossRef]
  10. D. Kim and H. Cha, “Rotational Raman LIDAR for obtaining aerosol scattering coefficients,” Opt. Lett. 30, 1728-1730 (2005). [CrossRef]
  11. D. Kim and H. Cha, “Rotational Raman LIDAR: design and performance test of meteorological parameters(Aerosol backscattering coefficients and temperature),” J. Korean Phys. Soc. 51, 352-357 (2007). [CrossRef]
  12. D. Kim and H. Cha, “Suggestion for qualitative LIDAR identification of different types of aerosol using the two wavelength rotational Raman and elastic LIDAR,” Opt. Lett. 31, 2915-2917 (2006). [CrossRef]
  13. H. Blasius, “Das Aehnlichkeitsgesetz bei Reibungsvorganegen,” Z. Ver. Dtsch. Ing. 16, 639-643 (1912).
  14. Y. M. Noh, Y. J. Kim, B. C. Choi, and T. Murayama, “Aerosol LIDAR ratio characteristics measured by a multi-wavelength Raman LIDAR system at Anmyeon Island, Korea,” Atmos. Res. 86, 76-87 (2007). [CrossRef]
  15. A. H. Omar and T. Babakaeva, “Aerosol optical properties derived from LIDAR observations using cluster analysis,” IEEE Intern. Geo. Rem. Sens. 3, 2212-2215 (2004). [CrossRef]
  16. L. Prandlt, “Uber Flussigkeitsbewegung bei sehr Kleiner Reibung,” Verh. III. Intern. Math. Kongr. Heidelberg, 484-491 (1904).
  17. A. Ansmann and D. Muller, “LIDAR and atmosphere aerosol particles,” Springer 102, 112-117 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited