OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea


  • Vol. 15, Iss. 1 — Mar. 1, 2011
  • pp: 9–14

Measurement of the Internal Structure of an Optical Waveguide Embedded in a Flexible Optical Circuit Board by Enhancing the Signal Contrast of a Confocal Microscope

Won-Jun Lee, Dae-Chan Kim, Beom-Hoan O, Se-Geun Park, El-Hang Lee, and Seung-Gol Lee  »View Author Affiliations

Journal of the Optical Society of Korea, Vol. 15, Issue 1, pp. 9-14 (2011)

View Full Text Article

Acrobat PDF (1034 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this study, the internal structure of an optical waveguide embedded in a flexible optical circuit board is observed with a confocal microscope. In order to increase the light reflection from an internal material interface with a very small index difference, and thus enhance the signal contrast, a theta microscopy scheme has been integrated into a conventional confocal microscope, and a high NA oil-immersion lens has been used. The interface reflectivity is increased from roughly 0.0015% to 0.025% by the proposed method, and the internal structure can thus be successfully measured.

© 2011 Optical Society of Korea

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(180.1790) Microscopy : Confocal microscopy
(230.7370) Optical devices : Waveguides

Original Manuscript: February 9, 2011
Revised Manuscript: February 21, 2011
Manuscript Accepted: February 23, 2011
Published: March 25, 2011

Won-Jun Lee, Dae-Chan Kim, Beom-Hoan O, Se-Geun Park, El-Hang Lee, and Seung-Gol Lee, "Measurement of the Internal Structure of an Optical Waveguide Embedded in a Flexible Optical Circuit Board by Enhancing the Signal Contrast of a Confocal Microscope," J. Opt. Soc. Korea 15, 9-14 (2011)

Sort:  Year  |  Journal  |  Reset


  1. G. L. Bona, B. J. Offreina, U. Bapsta, C. Bergera, R.Beyelera, R. Buddb, R. Dangela, L. Dellmanna, and F. Horsta,“Characterization of parallel optical-interconnect waveguidesintegrated on a printed circuit board,” Proc. SPIE 5453,134-141 (2004). [CrossRef]
  2. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera,and R. T. Chen, “Flexible optical waveguide film fabricationsand optoelectronic devices integration for fully embeddedboard level optical interconnects,” J. Lightwave Technol.22, 2168-2176 (2004). [CrossRef]
  3. D. H. Hartman, G. R. Lalk, J. W. Howse, and R. R.Krchnavek, “Radiant cured polymer optical waveguides onprinted circuit boards for photonic interconnection use,” Appl.Opt. 28, 40-47 (1989). [CrossRef]
  4. E.-H. Lee, S. G. Lee, B. H. O, and S.-G. Park, “Polymer-basedoptical printed circuit board (O-PCB) as a potentialplatform for VLSI microphotonic integration,” J. NonlinearOpt. Phys. & Mater. 14, 409-425 (2005). [CrossRef]
  5. B.-H. Lee, N.-H. Shin, K. Jeong, M.-J. Park, B.-G. Kim,J.-H. Yoo, D.-G. Kim, K.-H. Yun, K.-S. Lee, K.-H. Kim,D.-K. Kim, and S.-H. Park, “Nondestructive optical measurementof refractive-index profile of graded-index lenses,” J.Opt. Soc. Korea 13, 468-471 (2009). [CrossRef]
  6. D.-S. Park, B.-H. O, S.-G. Park, E.-H. Lee, J.-H. Park, andS.-G. Lee, “Noise-robust phase gradient retrieval formulationfor phase-shifting interferometry,” J. Opt. Soc. Korea 14,131-136 (2010). [CrossRef]
  7. T. Wilson, Confocal Microscope (Academic Press, Oxford,UK, 1990).
  8. G. Min, Principles of Three-dimensional Imaging inConfocal Microscopes (World Scientific, Singapore, 1996).
  9. R. Kassies, K. O. Van Der Werf, A. Lenferink, C. N.Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “CombinedAFM and confocal fluorescence microscope for applicationsin bio-nanotechnology,” J. Microscopy 217, 109-116 (2004).
  10. A. Gerger, R. Hofmann-Wellenhof, U. Langsenlehner, E.Richtig, S. Koller, W. Weger, V. Ahlgrimm-Siess, M.Horn, H. Samonigg, and J. Smolle, “In vivo confocal laserscanning microscopy of melanocytic skin tumours diagnosticapplicability using unselected tumour images,” Br. J.Dermatol. 158, 329-333 (2008). [CrossRef]
  11. C. R. Fairley, T.-Y. Fu, B.-M. B. Tsai, and S. A. Young,“Confocal wafer inspection system and method,” U.S. Patent 0273196 (2008).
  12. S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocaltheta fluorescence microscopy with annular apertures,” Appl.Opt. 35, 126-130 (1996). [CrossRef]
  13. S. Lindek and E. H. K. Stelzer, “Optical transfer functionsfor confocal theta fluorescence microscopy,” J. Opt. Soc.Am. A 13, 479-482 (1996). [CrossRef]
  14. M. J. Mandella, M. H. Garrett, and G. S. Kino, “Integratedangled-dual-axis confocal scanning endoscopes,” U.S. Patent 6522444 (2003).
  15. M. J. Mandella, G. S. Kino, and N. Y. Chan, “Dual-axisconfocal microscope having improved performance forthick samples,” U.S. Patent 7242521 (2007).
  16. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopyfor three-dimensional mechanical imaging,” Nature Photonics2, 39-43 (2008). [CrossRef]
  17. P. J. Dwyer, C. A. Dimarzio, and M. Rajadhyaksha, “Confocaltheta line-scanning microscope for imaging human tissues,”Appl. Opt. 46, 1843-1851 (2007). [CrossRef]
  18. T. Dabbs and M. Glass, “Fiber-optic confocal microscope,”Appl. Opt. 31, 3030-3035 (1992). [CrossRef]
  19. L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometrywith a fiber optical confocal scanning microscope,”Meas. Sci. Technol. 11, 1786-1791 (2000). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited