OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea


  • Vol. 9, Iss. 1 — Mar. 25, 2005
  • pp: 16–21

Fabrication of Nano Dot and Line Arrays Using NSOM Lithography

Sangjin Kwon, Pilgyu Kim, Sungho Jeong, Wonseok Chang, Chaemin Chun, and Dong-Yu Kim  »View Author Affiliations

Journal of the Optical Society of Korea, Vol. 9, Issue 1, pp. 16-21 (2005)

View Full Text Article

Acrobat PDF (700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Using a cantilever type nanoprobe having a 100㎚m aperture at the apex of the pyramidal tip of a near-field scanning optical microscope (NSOM), nanopatterning of polymer films are conducted. Two different types of polymer, namely a positive photoresist (DPR-i5500) and an azopolymer (Poly disperse orange-3), spincoated on a silicon wafer are used as the substrate. A He-Cd laser with a wavelength of 442㎚ is employed as the illumination source. The optical near-field produced at the tip of the nanoprobe induces a photochemical reaction on the irradiated region, leading to the fabrication of nanostructures below the diffraction limit of the laser light. By controlling the process parameters properly, nanopatterns as small as 100㎚ are produced on both the photoresist and azopolymer samples. The shape and size variations of the nanopatterns are examined with respect to the key process parameters such as laser beam power, irradiation time or scanning speed of the probe, operation modes of the NSOM (DC and AC modes), etc. The characteristic features during the fabrication of ordered structures such as dot or line arrays using NSOM lithography are investigated. Not only the direct writing of nano array structures on the polymer films but also the fabrication of NSOM-written patterns on the silicon substrate were investigated by introducing a passivation layer over the silicon surface. Possible application of thereby developed NSOM lithography technology to the fabrication of data storage is discussed.

© 2005 Optical Society of Korea

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.5470) Materials : Polymers
(180.5810) Microscopy : Scanning microscopy
(210.4770) Optical data storage : Optical recording
(260.5130) Physical optics : Photochemistry

Original Manuscript: January 27, 2005
Revised Manuscript: March 10, 2005
Published: March 1, 2005

Sangjin Kwon, Pilgyu Kim, Sungho Jeong, Wonseok Chang, Chaemin Chun, and Dong-Yu Kim, "Fabrication of Nano Dot and Line Arrays Using NSOM Lithography," J. Opt. Soc. Korea 9, 16-21 (2005)

Sort:  Year  |  Journal  |  Reset


  1. A. Tarun, M. Rosendo, H.Daza, N. Hayazama, Y. Inouye, and S. Kawata, "Apertureless optical near-field fabrication using an atomic force microscope on photoresists," Applied Physics Letters, vol. 80, pp. 3400-3402, 2002 [CrossRef]
  2. J. Jersch, F. Demming, and K. Dickmann, "Nanostructuring with laser radiation in the near-field of a tip from a scanning force microscope," Journal of Applied Physics A, vol. 64, pp. 29-32, 1997 [CrossRef]
  3. R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Nearfield optical lithography of a conjugated polymer," Applied Physics Letters, vol. 82, pp. 526-528, 2003 [CrossRef]
  4. N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J. P. Boilot, K. Lahlil, and V. 1. Safarov, "Near-field optical patterning on azo-hybrid sol-gel films," Applied Physics Letters, vol. 79, pp. 4562-4564, 200l [CrossRef]
  5. F. Cacialli, Rovert Riehn, A. Downes, G. Latini, Ana Charas, and Jorge Morgado, "Fabrication of conjugated polymers nanostructures via direct near-freld optical lithography," Ultramicroscopy, vol. 100, pp. 3-4, pp. 449-455, 2004 [CrossRef]
  6. T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, "Fabrication and evaluation of nanometer-sized metal oxide structures on composite metal thin filrns using scanning near-field optical microscope," Japanese Journal of Applied Physics, vol. 41, pp. 6256- 6263, 2002 [CrossRef]
  7. Y. Shen, J. Swiatkiewicz, P. N. Prasad, and R. A. Vaia, "Hybrid near-field optical memory and photofabrication in dye-doped polymer film," Optics Commucicationsm Vol. 200, pp. 9-13, 2001. [CrossRef]
  8. J. Y. Kim, K. B. Song;, K. H. Park, H. W. and Lee, E. K. Kim, "Near-field optical recording of photochr¬omic materials using bent cantilever fiber probes," Japanese Journal of Applied Physics, vol. 41. pp. 5222-5225, 2002. [CrossRef]
  9. J. D. Lee, Fundamentals of semiconductor process 3rd edn. (Daeyoung press, Seoul, Korea, 2002), pp. 336
  10. S. Choi, K. R. Kim, K. Oh, C. M. Chun, 11. J. Kim, S. J. Yoo, and D.Y.Kim, "Interferometric inscription of surface relief gratings on optical fiber using azo polymer film," Applied Physics Letters, vol. 83, pp. 1080-1082, 2003 [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited