Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Method for rapidly calculating the diffraction of laser radiation at microscopic objects

Not Accessible

Your library or personal account may give you access

Abstract

This paper discusses an iterative algorithm for solving Fredholm's integral equation of the second kind by using the fast-Fourier-transformation algorithm to compute a convolution-type integral. The algorithm is used to analyze the diffraction of an electromagnetic wave with TE/TM polarization (for example, a nonparaxial Gaussian beam) at cylindrical dielectric microscopic objects whose linear cross-sectional size is comparable with the wavelength. The results of numerical modeling are presented, along with a comparison with an analytical calculation. © 2005 Optical Society of America

PDF Article
More Like This
Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section

Philippe Boyer, Evgeni Popov, Michel Nevière, and Gérard Tayeb
J. Opt. Soc. Am. A 21(11) 2146-2153 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.