Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical modulators based on a dual-frequency nematic liquid crystal

Not Accessible

Your library or personal account may give you access

Abstract

This paper experimentally investigates the dynamic characteristics of electrically controlled modulators based on liquid crystals (LCs) in the visible and near-IR regions and the effect of the electric-field parameters on them, along with the variation of the conditions of the interphase interaction of the LCs with the orienting surface. It is shown that it is effective to use a dual-frequency liquid crystal for phase and amplitude modulation of radiation with wavelength 1.55μm. In an LC modulator operating on the S effect, a 2π phase lag is obtained in a time of 2ms. The switching times can be reduced to the microsecond range when the twist effect is used and the LC layer is about 7μm thick by increasing the voltage from 30to50V.

© 2008 Optical Society of America

PDF Article
More Like This
Optical characterization of a dual-frequency hybrid aligned nematic liquid crystal cell

S. A. Jewell and J. R. Sambles
Opt. Express 13(7) 2627-2633 (2005)

Electrically tunable lens based on a dual-frequency nematic liquid crystal

Oleg Pishnyak, Susumu Sato, and Oleg D. Lavrentovich
Appl. Opt. 45(19) 4576-4582 (2006)

Polarization-independent nematic liquid crystal phase modulator based on optical compensation with sub-millisecond response

Kexin Yan, Qi Guo, Fan Wu, Jiatong Sun, Huijie Zhao, and Hoi-Sing Kwok
Opt. Express 27(7) 9925-9932 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved