OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 75, Iss. 8 — Aug. 1, 2008
  • pp: 518–523

Multielement IR detectors based on Schottky barriers sensitive to radiation with quantum energy less than the height of the potential barrier

V. G. Ivanov, G. V. Ivanov, and A. A. Kamenev  »View Author Affiliations

Journal of Optical Technology, Vol. 75, Issue 8, pp. 518-523 (2008)

View Full Text Article

Acrobat PDF (113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper discusses the physical mechanism of the operation and construction of new electromagnetic-radiation detectors based on the emission of a hot-electron gas, which use the effect of variation of the thermionic-emission current in a semiconductor diode with a Schottky barrier when the absorbed radiation energy is directly transferred to the electron-gas system in the quasi-metallic layer of the barrier. The fact that the time to establish equilibrium inside the electron-gas system differs from the time to establish an equilibrium state between the electron gas and the phonon system makes it possible to increase the temperature of the electron gas and accordingly the thermionic-emission current without changing the temperature of the crystal lattice of the detector. It becomes possible in this case to detect radiation with quantum energy less than the height of the potential barrier of the Schottky diode and to significantly increase the limiting wavelength of the detector. Taking into account the fact that no thermal insulation of these detectors from the substrate is required, an example is given of how to construct the topological layout of a photodetector array.

© 2008 Optical Society of America

V. G. Ivanov, G. V. Ivanov, and A. A. Kamenev, "Multielement IR detectors based on Schottky barriers sensitive to radiation with quantum energy less than the height of the potential barrier," J. Opt. Technol. 75, 518-523 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. F. Kosonocky, H. G. Erhardt, G. Meray, F. V. Shallcross, H. Elabd, M. Y. Cantella, Y. Klein, L. H. Skolnik, B. R. Capone, R. W. Taylor, W. Ewig, F. D. Shepherd, and S. A. Roosild, “Advances in platinum silicide Schottky-barrier IR-CCD image sensors,” Proc. SPIE 225, 69 (1980).
  2. T. S. Villani, W. F. Kosonoky, F. V. Shallcross, J. V. Groppe, G. M. Meray, J. J. O'Neil, and B. J. Esposito, “Construction and performance of 320×244-element IR CCD imager with PtSi Schottky-barrier detectors,” Proc. SPIE 1107, 9 (1989).
  3. T. L. Lin, Y. S. Park, T. George, E. V. Jones, R. V. Fathauer, and J. Maserjian, “Long-wavelength PtSi infrared detectors fabricated by incorporating a p+ doping spike grown by molecular beam epitaxy,” Appl. Phys. Lett. 62, 3318 (1993). [CrossRef]
  4. S. K. Boĭtsov, V. G. Ivanov, Yu. I. Moiseev, S. A. Kassirov, V. A. Fedorov, V. I. Panasenkov, A. E. Prokof'ev, and V. O. Timofeev, “Photosensitive charge-transfer array based on photodiodes with Schottky barriers made from PtSi/Si with 256×256 elements,” in Abstracts of Reports of the Fourth Conference on Charge-Coupled Devices and Systems Based on Them, PZS-92, Moscow, 1992, p. 45.
  5. B.-Y. Tsaur, C. K. Chen, and B. A. Nechay, “IrSi Schottky-barrier infrared detectors with wavelength response beyond 12μm,” IEEE Electron Device Lett. 11, 415 (1990). [CrossRef]
  6. B.-Y. Tsaur, C. K. Chen, and S. A. Marino, “Heterojunction GexSi1−x/Si infrared detectors and focal plane arrays,” Opt. Eng. (Bellingham) 33, 72 (1994). [CrossRef]
  7. T. L. Lin, Y. S. Park, E. W. Yones, H. M. Del Castillo, T. George, and S. D. Ganapala, “Long-wavelength stacked Si1−xGex/Si heterojunction internal photoemission infrared detectors,” Opt. Eng. (Bellingham) 33, 718 (1994).
  8. J. M. Andews, Jr., R. R. Morgan, and S. M. Sze, “Schottky barrier diode contacts,” U.S. Patent 3 964 084 (1976); J. M. Shannon and J. R. A. Beale, “Making Schottky barrier devices,” U.S. Patent 4 045 248 (1977).
  9. W. F. Kosonocky and H. Elabd, “Schottky-barrier diode radiant energy detector with extended longer wavelength response,” U.S. Patent 4 544 939 (1985).
  10. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969; Mir, Moscow, 1984).
  11. A. Rogalsky, Infrared Detectors [Russian translation from English] (Nauka, Novosibirsk, 2003), pp. 81-157.
  12. V. N. Ovsyuk, G. L. Kuryshev, and Yu. G. Sidorov, Infrared Photodetector Arrays (Nauka, Novosibirsk, 2001), pp. 10-118.
  13. Y. E. Murguia, P. K. Tedrow, F. D. Shepherd, D. Leahy, and M. M. Weeks, “Performance analysis of a thermionic thermal detector at 400K, 300K, and 200K,” Proc. SPIE 3698, 361 (1999). [CrossRef]
  14. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1964; Mir, Moscow, 1966).
  15. B. S. Karasik, W. R. McGrath, M. E. Gershenson, and A. V. Sergeev, “Hot-electron direct detectors: feasibility of NEP ≈10−20W/Hz at submillimeter waves,” J. Appl. Phys. 87, 7856 (2000).
  16. K. S. Il'in, N. G. Ptitsina, A. V. Sergeev, G. N. Goltsman, M. E. Gershenson, B. S. Karasik, E. V. Pechen, and S. I. Krasnosvobodtsev, “Interrelation of resistivity and inelastic electron-phonon scattering rate in impure NbC films,” Phys. Rev. B 57, 15623 (1998). [CrossRef]
  17. P. P. Yakovlev and B. B. Meshkov, Designing Interference Coatings (Mashinostroenie, Moscow, 1987).
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1970).
  19. Y. Schopper, Optik 10, 426 (1953).
  20. V. G. Ivanov and G. V. Ivanov, “Photodetector array based on Schottky barriers with sensitivity in the submillimeter range of wavelengths,” Russian Patent 2 304 826 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited