OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 76, Iss. 12 — Dec. 1, 2009
  • pp: 791–798

Materials for photodetectors based on intersubband transitions in GaN/AlGaN quantum dots

K. S. Zhuravlev, V. G. Mansurov, S. N. Grinyaev, G. F. Karavaev, and P. Tronc  »View Author Affiliations


Journal of Optical Technology, Vol. 76, Issue 12, pp. 791-798 (2009)
http://dx.doi.org/10.1364/JOT.76.000791


View Full Text Article

Acrobat PDF (652 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electron states and optical properties of a dense ordered array of quantum dots (QDs) based on GaN and AlN crystals of the wurtzite (w) structure have been studied by the pseudopotential method, with the hexagonal symmetry, deformations, and internal electric fields accurately taken into account. It is shown that the minimum of the first electron miniband at the center of the Brillouin zone of the QD superlattice originates from a state of the central Γ1 valley of the conduction band of the binary crystals, while the higher levels are associated with the states of the U side valleys and the neighborhood of the Γ valley. The first absorption peak of light polarized in the basal plane, e⊥c, is associated with transitions from the lower level with symmetry Γ1 in the quantum Γ well to two close-lying levels with symmetry Γ3. The absorption of light with polarization parallel to the hexagonal axis, e∥c, is weaker, and the peak is shifted toward higher energies. Because of this, an array of small GaN QDs can be used in IR photodetectors with the light incident on the front. A technology for obtaining arrays of small QDs with high density is proposed and developed.

© 2009 Optical Society of America

Citation
K. S. Zhuravlev, V. G. Mansurov, S. N. Grinyaev, G. F. Karavaev, and P. Tronc, "Materials for photodetectors based on intersubband transitions in GaN/AlGaN quantum dots," J. Opt. Technol. 76, 791-798 (2009)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-76-12-791


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Tronc, K. S. Zhuravlev, V. G. Mansurov, G. F. Karavaev, S. N. Grinyaev, I. Milosevic, and M. Damnjanovic, “Optical properties of photodetectors based on wurtzite quantum dot arrays,” Phys. Rev. B 77, 165328 (2008). [CrossRef]
  2. S. N. Grinyaev and V. V. Lopatin, “Electronic structure of graphitelike and rhombohedral boron nitride,” Izv. Vyssh. Uchebn. Zaved. Fiz. 35, No. 227 (1992).
  3. A. D. Andreev and E. P. O'Reilly, “Theory of the electronic structure of GaN/AlN hexagonal quantum dots,” Phys. Rev. B 62, 15851 (2000). [CrossRef]
  4. A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, “Quasi-particle band structure of AlN and GaN,” Phys. Rev. B 48, 11810 (1993). [CrossRef]
  5. D. Fritsch, H. Schmidt, and M. Grundmann, “Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN, GaN, and InN,” Phys. Rev. B 67, 235205 (2003). [CrossRef]
  6. P. Perlin, I. Gorczyca, S. Porowski, T. Suski, N. E. Christensen, and A. Polian, “III-V semiconducting nitrides: Physical properties under pressure,” Jpn. J. Appl. Phys., Part 1 32, 334 (1993). [CrossRef]
  7. Y. C. Yeo, T. C. Chong, and M. F. Li, “Electronic band structures and effective-mass parameters of wurtzite GaN and InN,” J. Appl. Phys. 83, 1429 (1998). [CrossRef]
  8. W. R. L. Lambrecht, B. Segall, J. Rife, W. R. Hunter, and D. K. Wickenden, “UV reflectivity of GaN: Theory and experiment,” Phys. Rev. B 51, 13516 (1995). [CrossRef]
  9. P. B. Perry and R. F. Rutz, “The optical absorption edge of single-crystal AlN prepared by a close-spaced vapor process,” Appl. Phys. Lett. 33, 319 (1978). [CrossRef]
  10. S. Loughin, R. H. French, W. Y. Ching, Y. N. Xu, and G. A. Slack, “Electronic structure of aluminium nitride: theory and experiment,” Appl. Phys. Lett. 63, 1182 (1993). [CrossRef]
  11. Y. C. Yeo, T. C. Chong, M. F. Li, and W. J. Fan, “Electronic band structures and optical gain spectra of strained wurtzite GaN-AlxGa1−xN quantum-well lasers,” IEEE J. Quantum Electron. 34, No. 3, 526 (1998). [CrossRef]
  12. V. G. Mansurov, Yu. G. Galitsyn, A. Yu. Nikitin, K. S. Zhuravlev, and Ph. Vennegues, “Investigation of growth mechanisms of GaN quantum dots on (0001) AlN surface by ammonia MBE,” Phys. Status Solidi C 3, 1548 (2006). [CrossRef]
  13. V. G. Mansurov, A. Yu. Nikitin, Yu. G. Galitsyn, and K. S. Zhuravlev, “Study of the surface morphology of AlGaN during MBE growth by the method of fast-electron diffraction,” in Abstracts of Reports of the Sixth All-Russia Conference on Nitrides of Gallium, Indium, and Aluminum--Structures and Devices, St. Petersburg, 2008, pp. 37-38.
  14. A. Yu. Nikitin, V. G. Mansurov, Yu. G. Galitsyn, K. S. Zhuravlev, and P. Tronc, “Exponential growth of the density of GaN and AlN nuclei under conditions of ammonium molecular-beam epitaxy,” in Abstracts of Reports of the Sixth All-Russia Conference on Nitrides of Gallium, Indium, and Aluminum--Structures and Devices, St. Petersburg, 2008, pp. 49-50.
  15. V. G. Mansurov, A. Yu. Nikitin, Yu. G. Galitsyn, S. N. Svitasheva, K. S. Zhuravlev, Z. Osvath, L. Dobos, Z. E. Horvath, and B. Pecz, “AlN growth on sapphire substrate by ammonia MBE,” J. Cryst. Growth 300, 145 (2007). [CrossRef]
  16. V. G. Mansurov, Yu. G. Galitsyn, A. Yu. Nikitin, E. A. Kolosovsky, K. S. Zhuravlev, Z. Osvath, L. Dobos, Z. E. Horvath, and B. Pecz, “Continuous order-disorder phase transition (2×2)-(1×1) on the (0001) AlN surface,” Phys. Status Solidi C 4, 2498 (2007). [CrossRef]
  17. F. Widmann, J. Simon, N. T. Pelekanos, B. Daudin, G. Feuillet, J. L. Rouvière, and G. Fishman, “Giant piezoelectric effect in GaN self-assembled quantum dots,” Microelectron. J. 30, 353 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited