OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 77, Iss. 1 — Jan. 1, 2010
  • pp: 6–17

Medical applications of mid-IR lasers. Problems and prospects

V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan  »View Author Affiliations

Journal of Optical Technology, Vol. 77, Issue 1, pp. 6-17 (2010)

View Full Text Article

Acrobat PDF (882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Any application of lasers in medicine is based on a compromise between the efficiency with which the laser radiation interacts with biological tissue and the concomitant collateral effects. Correspondingly, parameters minimizing undesirable damage to tissue must be determined. The development of a new generation of solid-state lasers tunable over a wide range in the mid-IR range of the spectrum with parametric generation of light and a combination of high radiation intensity and relatively low pulse energy at high repetition frequency opens up new possibilities for less-invasive, high-precision, laser surgery, first and foremost, in ophthamology and neuro- and cardiosurgery.

© 2010 Optical Society of America

V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, "Medical applications of mid-IR lasers. Problems and prospects," J. Opt. Technol. 77, 6-17 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. J. Haglund, “Applications of Free Electron Lasers in biological sciences, medicine and material science,” in: Photon-Based Nanoscience and Nanobiotechnology, edited by J.J.Dubowski and S.Tanev, Springer, NY (2006), pp. 175-203.
  2. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577 (2003). [CrossRef]
  3. S. R. Uhlhorn, Free Electron Laser Ablation of Soft Tissue: The Effects of Chromophore and Pulse Characteristics on Ablation Mechanics, Dissertation, Vanderbilt University, Nashville, Tennessee (2002).
  4. B. Jean, “Medical and surgical application of FELs,” IEEE Particle Accelerator Conference, Dallas, TX, USA, 1-5 May 1995, Vol. 1, pp. 75-79.
  5. J. J. Salz, Corneal Laser Surgery, Mosby, Philadelphia, PA (1995).
  6. K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001). [CrossRef]
  7. I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys. A 81, 329 (2005). [CrossRef]
  8. J. T. Walsh and J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295 (1994). [CrossRef]
  9. G. J. Wilmink, Using Optical Imaging Methods to Assess Laser-Tissue Interactions, Dissertation, Vanderbilt University, Nashville, Tennessee (2007).
  10. M. S. Hutson, S. A. Hanger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, Part 1, 061906 (2002). [CrossRef]
  11. Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008). [CrossRef]
  12. M. S. Hutson and G. S. Edwards, “Advances in the physical understanding of laser surgery at 6.45microns,” Proc. 26th International FEL Conf., Trieste, Italy (2004). pp. 648-653.
  13. M. A. Mackanos, The Effect of Pulse Structure on Soft Tissue Laser Ablation at Mid-IR Wavelengths, Dissertation, Vanderbilt University, Nashville, Tennessee (2004).
  14. D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999). [CrossRef]
  15. R. K. Joos, R. J. Shah, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers Surg. Med. 38, 846 (2006). [CrossRef]
  16. M. J. Shah, J. H. Shen, and K. M. Joos, “Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration,” Lasers Surg. Med. 39, 589 (2007). [CrossRef]
  17. G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001). [CrossRef]
  18. G. Edwards, W. Wagner, A. Sokolow, and R. Pearlstein “Pressure (mechanical) effects in infrared tissue ablation,” Proc. SPIE 6854, 685410 (2008). [CrossRef]
  19. B. A. Hooper, A. Maheshwari, A. C. Curry, and T. M. Alter, “Catheter for diagnosis and therapy with infrared evanescent waves,” Appl. Opt. 42(16), 3205 (2003). [CrossRef]
  20. K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu, “Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75μm for less-invasive laser angioplasty,” Proc. SPIE 7373, 73731E (2009). [CrossRef]
  21. J. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38, No. 3, 218 (2006). [CrossRef]
  22. J. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45μm,” Lasers Surg. Med. 39, No. 4, 332 (2007). [CrossRef]
  23. J. T. Payne, J. T. Payne, and V. Venugopalan, “Comparison of cortical bone ablations by using infrared laser wavelengths 2.9to9.2μm,” Lasers Surg. Med. 26, 421 (1999).
  24. M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997). [CrossRef]
  25. P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999). [CrossRef]
  26. E. Swift, “Free-electron laser etching of dental enamel,” J. Dent. 29, No. 5, 347 (2001). [CrossRef]
  27. F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001). [CrossRef]
  28. A. V. Platonov, A. N. Soldatov, and A. G. Filoonov, “Pulsed strontium-vapor laser,” Sov. J. Quantum Electron. 5, No. 1, 198 (1978).
  29. M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007). [CrossRef]
  30. K. Miyamoto and H. Ito, “Wavelength-agile mid-IR (5-10μm) generation using a galvano-controlled KTP-OPO,” Opt. Lett. 32, No. 3, 274 (2006). [CrossRef]
  31. M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy mid-infrared laser source based on-optical parametric amplification in ZnGeP2,” Opt. Express 16(18), 14263 (2008). [CrossRef]
  32. P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.
  33. O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.
  34. A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).
  35. P. S. Kuo and M. M. Fejer, “Microstructured semiconductors for mid-infrared nonlinear optics,” in Mid-Infrared Coherent Sources and Applications, edited by M.Ebrahim-Zadeh and I.T.Sorokina, Springer, NY (2008), pp. 149-168.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited