OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 79, Iss. 10 — Oct. 1, 2012
  • pp: 614–620

Anisotropic polarization, predicted as a result of the diffraction of blackbody radiation at a reflective phase grating with ideal conductivity

V. V. Savukov  »View Author Affiliations


Journal of Optical Technology, Vol. 79, Issue 10, pp. 614-620 (2012)
http://dx.doi.org/10.1364/JOT.79.000614


View Full Text Article

Acrobat PDF (2579 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the course of analyzing the axiomatic principles that form the basis of statistical physics, the validity of the postulate that all the isoenergetic microstates of a closed system are equally probable was checked. This article reports the results of numerically modelling the interaction of thermodynamically equilibrium blackbody radiation with a reflective phase diffraction grating that possesses ideal conductivity. Cases are found in which anisotropy of the polarization parameters is guaranteed to appear inside a closed volume of initially homogeneous blackbody radiation, resulting in a formal decrease of its Boltzmann entropy as a consequence of deviation from the microcanonical Gibbs distribution. This is apparently caused by the discontinuous character of the change of the phase trajectories of the photons during diffraction, which makes the physical system under consideration nonergodic.

© 2012 OSA

History
Original Manuscript: December 29, 2011
Published: October 31, 2012

Citation
V. V. Savukov, "Anisotropic polarization, predicted as a result of the diffraction of blackbody radiation at a reflective phase grating with ideal conductivity," J. Opt. Technol. 79, 614-620 (2012)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-79-10-614

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited