OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 79, Iss. 10 — Oct. 1, 2012
  • pp: 667–673

Simulation and analysis of Gaussian apodized fiber Bragg grating strain sensor

K. S. Khalid, M. Zafrullah, S. M. Bilal, and M. A. Mirza  »View Author Affiliations

Journal of Optical Technology, Vol. 79, Issue 10, pp. 667-673 (2012)

View Full Text Article

Acrobat PDF (452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the performance of various apodization profiles (uniform, hyperbolic tangent and gaussian) for un-chirped Fiber Bragg Grating is investigated. Apodization techniques are used to get optimized reflection spectra with high side lobe suppression. The simulations are done by solving coupled mode equations in MATLAB using transfer matrix method which explains the relationship between the guided modes. The result shows that Gaussian profile suppresses side lobe level much more efficiently than uniform and hyperbolic tangent profiles. Gaussian apodized Fiber Bragg Grating is used to indicate strain by producing wavelength shift. MATLAB and Opti-grating result gives an idea about the efficiency of the suggested scheme to analyze strain measurements by giving a linear response.

© 2012 OSA

Original Manuscript: August 18, 2012
Published: October 31, 2012

K. S. Khalid, M. Zafrullah, S. M. Bilal, and M. A. Mirza, "Simulation and analysis of Gaussian apodized fiber Bragg grating strain sensor," J. Opt. Technol. 79, 667-673 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Singh, A. Khare, and S. Kumar, “Fiber Bragg grating modeling, characterization and optimization with different index profiles,” Int. J. Eng. Sci. Technol. 2, No. 9, 4463 (2010).
  2. J. Singh, A. Khare, and S. Kumar, “Design of Gaussian apodized fiber Bragg grating and its applications,” Int. J. Eng. Sci. Technol. 2, No. 5, 1419 (2010).
  3. S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” IEEE Int. Conf. Commun. Signal Process. (ICCSP) (2011), pp. 28–32.
  4. J. L. Rebola and A. V. T. Cartazo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 20, No. 8, 1537 (2002). [CrossRef]
  5. P. K. Sahu, S. Kumar, C. Gowre, S. Mahapatra, and J. C. Biswas, “Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network,” IFIP Int. Conf. Wireless Opt. Commun. Networks (2006).
  6. N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009). [CrossRef]
  7. B. A. Tahir, J. Ali, and R. A. Rahman, “Strain measurements using fibre Bragg grating sensor,” Am. J. Appl. Sci. (Special Issue)40 (2005).
  8. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, No. 8, 1263 (1997). [CrossRef]
  9. J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002). [CrossRef]
  10. O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002). [CrossRef]
  11. H. Lu, R. Hussain, M. Zhou, and X. Gu, “Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests,” IEEE Sensors J. 9, No. 4, 457 (2009). [CrossRef]
  12. J. C. C. Carvalho, M. J. Sousa, C. S. Sales Junior, J. C. W. A. Costa, C. R. L. Frances, and M. E. V. Segatto, “A new acceleration technique for the design of fibre gratings,” Opt. Express 14, No. 2, 10715 (2006). [CrossRef] [PubMed]
  13. H. S. Phing, J. Ali, R. A. Rahman, and B. A. Tahir, “Fiber Bragg grating modeling, simulation and characteristics with different grating lengths,” J. Fundam. Sci. 3, No. 2, 167 (2007).
  14. A. Othonosa, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, No. 12, 4309 (1997). [CrossRef]
  15. L. H. Kang, D. K. Kim, and J. H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” J. Sound Vib. No. 3, 534 (2007). [CrossRef]
  16. D. H. Kanga, S. O. Park, C. S. Hong, and C. G. Kim, “The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths,” NDT & E Int. 38, No. 8, 712 (2005). [CrossRef]
  17. I. Yulianti, A. S. M. Supa’at, S. M. Idrus, and A. M. Al-hetar, “Simulation of apodization pro files performances for unchirped fiber Bragg gratings,” IEEE Int. Conf. Photonics (ICP) (2010), pp. 1–5.
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, No. 8, 1277 (1997). [CrossRef]
  19. M. Prabhugoud and K. Peters, “Modified transfer matrix formulation for Bragg grating strain sensors,” J. Lightwave Technol. 22, No. 10, 2302 (2004). [CrossRef]
  20. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE. 1516, 185 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited