OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 80, Iss. 11 — Nov. 1, 2013
  • pp: 661–666

Multiphoton generation of electron–hole pairs accompanying the resonance optical Stark effect

M. A. Bondarev and E. Yu. Perlin  »View Author Affiliations


Journal of Optical Technology, Vol. 80, Issue 11, pp. 661-666 (2013)
http://dx.doi.org/10.1364/JOT.80.000661


View Full Text Article

Acrobat PDF (2319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

General expressions obtained earlier for nonlinear photogeneration rates of electron–hole pairs (EHPs) under conditions of n-photon–one-photon resonance on adjacent interband transitions are used to analyze manifestations of the resonance optical Stark effect in the case n=4. Because of the appearance of new Van Hove singularities in the electronic band spectrum reconstructed in the field of a strong electromagnetic wave, the multiphoton EHP-generation rate W(4) is a nonmonotonic function of radiation intensity j and includes a region of extremely rapid growth, in which a small change of j causes W(4) to increase by several orders of magnitude.

© 2014 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(270.4180) Quantum optics : Multiphoton processes

History
Original Manuscript: June 13, 2013
Published: January 23, 2014

Citation
M. A. Bondarev and E. Yu. Perlin, "Multiphoton generation of electron–hole pairs accompanying the resonance optical Stark effect," J. Opt. Technol. 80, 661-666 (2013)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-80-11-661


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. S.  Mao, F.  Quere, S.  Guizard, X.  Mao, R. E.  Russo, G.  Petite, P.  Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695 (2004).
  2. B. S.  Sharma, K. E.  Riekhof, “Laser-induced photoconductivity in silicate glasses by multiphoton excitation, a precursor of dielectric breakdown and mechanical damage,” Can. J. Phys. 45, 3781 (1967). [CrossRef]
  3. V. A.  Kovarskii, E. Yu.  Perlin, “Multi-photon interband optical transitions in crystals,” Phys. Status Solidi B 45, 47 (1971). [CrossRef]
  4. A.  Schmid, P.  Kelly, P.  Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569 (1977). [CrossRef]
  5. S. C.  Jones, P.  Braunlich, R. T.  Casper, X. A.  Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989). [CrossRef]
  6. S. C.  Jones, X. A.  Shen, R. F.  Braunlich, “Mechanism of prebreakdown nonlinear energy deposition from intense photon field at 532  nm in NaCl,” Phys. Rev. B 35, 894 (1987). [CrossRef]
  7. X. A.  Shen, S. C.  Jones, P. F.  Braunlich, “Four-photon absorption cross section in potassium bromide at 532  nm,” Phys. Rev. B 36, 2831 (1987). [CrossRef]
  8. A.  Vogel, J.  Noack, G.  Huttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015 (2005). [CrossRef]
  9. M.  Lenzner, J.  Kruger, S.  Sartania, Z.  Cheng, C. H.  Spielmann, G.  Mourou, W.  Kautek, F.  Krausz, “Femtosecond optical breakdown in dielectric,” Phys. Rev. Lett. 80, 4076 (1998). [CrossRef]
  10. I. N.  Zavestovskaya, P. G.  Eliseev, O. N.  Krokhin, N. A.  Men’kova, “Analysis of the nonlinear absorption mechanisms in ablation of transparent materials by high-intensity and ultrashort laser pulses,” Appl. Phys. A 92, 903 (2008). [CrossRef]
  11. B. S.  Sharma, K. E.  Riekhof, “Laser-induced dielectric breakdown and mechanical damage in silicate glasses,” Can. J. Phys. 48, 1178 (1970). [CrossRef]
  12. V. E.  Gruzdev, “Photoionization rate in wide band-gap crystals,” Phys. Rev. B 75, 205106 (2007). [CrossRef]
  13. V. M.  Galitskiĭ, S. P.  Goreslavskiĭ, V. F.  Elesin, “Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz. 57, 207 (1969) [Sov. Phys. JETP 30, 117 (1969)].
  14. E. Yu.  Perlin, V. A.  Kovarskiĭ, “The effect of laser resonance radiation on the intrinsic absorption of light in crystals,” Fiz. Tverd. Tela (Leningrad) 12, 3105 (1970) [Sov. Phys. Solid State 12, 2512 (1970)].
  15. Y.  Yacoby, “Optical double resonance in solids,” Phys. Rev. B 1, 1666 (1970). [CrossRef]
  16. N.  Tzoar, J. I.  Gersten, “Theory of electronic band structure in intense laser fields,” Phys. Rev. B 12, 1132 (1975). [CrossRef]
  17. V. M.  Galitskiĭ, S. P.  Goreslavskiĭ, V. F.  Elesin, “Electric and magnetic properties of a semiconductor in the field of a strong electromagnet,” Zh. Eksp. Teor. Fiz. 57, 207 (1969) [Sov. Phys. JETP 30, 117 (1970)].
  18. Yu. I.  Balkareĭ, É. M.  Epshteĭn, “On the quasi-energetic spectrum of a semiconductor in the field of a strong electromagnetic wave,” Fiz. Tverd. Tela (Leningrad) 17, 2312 (1975) [Sov. Phys. Solid State 17, 1529 (1975)].
  19. E. Yu.  Perlin, “Optical Stark effect accompanying transient double resonance in semiconductors,” Zh. Eksp. Teor. Fiz. 105, 186 (1994) [JETP 78, 98 (1994)].
  20. E. Yu.  Perlin, A. V.  Fedorov, “Two-photon absorption monitored by the resonance optical Stark effect in crystals and quantum nanostructures,” Opt. Spektrosk. 78, 445 (1995) [Opt. Spectrosc. 78, 400 (1995)].
  21. E. Yu.  Perlin, A. V.  Fedorov, “Critical points of the electron band spectrum in the field of an electromagnetic wave,” Fiz. Tverd. Tela (Leningrad) 37, 1463 (1995) [Phys. Solid State 37, 792 (1995)].
  22. E. Yu.  Perlin, A. V.  Fedorov, “Quasi-steady-state optical Stark effect accompanying double interband resonance in anisotropic semiconductors,” Izv. Ross. Akad. Nauk Ser. Fiz. 60, No. 6, 164 (1996).
  23. E. Yu.  Perlin, D. I.  Stasel’ko, “Nonlinear excitation of AgBr nanocrystals in the field of short light pulses,” Opt. Spektrosk. 88, 57 (2000) [Opt. Spectrosc. 88, 50 (2000)].
  24. E. Yu.  Perlin, D. I.  Stasel’ko, “Multiphoton transitions and the resonant optical Stark effect in AgBr nanocrystals,” Opt. Spektrosk. 98, 944 (2005) [Opt. Spectrosc. 98, 844 (2005)].
  25. A. V.  Ivanov, E. Yu.  Perlin, “Prebreakdown excitation of crystals accompanying double multiphoton resonance: I. Probabilities of interband transitions,” Opt. Spektrosk. 106, 756 (2009) [Opt. Spectrosc. 106, 677 (2009)].
  26. A. V.  Ivanov, E. Yu.  Perlin, “Prebreakdown excitation of crystals at double multiphoton resonance: II. Analysis of the effects of transformation of electronic band spectrum,” Opt. Spektrosk. 106, 764 (2009) [Opt. Spectrosc. 106, 685 (2009)].
  27. M. A.  Bondarev, A. V.  Ivanov, E. Yu.  Perlin, “Prebreakdown excitation of crystals at double multiphoton resonance: III. Forbidden transitions,” Opt. Spektrosk. 112, 115 (2012) [Opt. Spectrosc. 112, 106 (2012)].
  28. M. A.  Bondarev, E. Yu.  Perlin, A. V.  Ivanov, “Multiphoton absorption monitored by the resonance optical Stark effect in crystals,” Opt. Spektrosk.115, No. 6 (2013) [in press].
  29. A. M.  Basharov, Photonics. The Method of Unitary Transformation in Nonlinear Optics (MIFI, Moscow, 1990).
  30. A. M.  Basharov, “The effective Hamiltonian method in nonlinear and quantum optics,” Teor. Fiz. 9, 7 (2008).
  31. L. A.  Hemstreet, C. Y.  Fong, “Electronic band structure and optical properties of 3C-SiC, BP, and BN,” Phys. Rev. B 6, 1464 (1972). [CrossRef]
  32. Y.  Zhang, N. A. W.  Holzwarth, R. T.  Williams, “Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4,” Phys. Rev. B 57, 12738 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited