OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 75, Iss. 10 — Oct. 1, 2008
  • pp: 664–669

Formation of microstructures based on UV-hardenable acrylates

M. I. Fokina, I. Yu. Denisyuk, Yu. É. Burunkova, and L. N. Kaporskiĭ  »View Author Affiliations

Journal of Optical Technology, Vol. 75, Issue 10, pp. 664-669 (2008)

View Full Text Article

Acrobat PDF (611 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper discusses the possibilities of obtaining optical microstructures based on UV-hardenable acrylates. The applicability of the method of halftone lithography for obtaining polymeric microlenses and for forming microelements on the end of an optical fiber is investigated.

© 2008 Optical Society of America

M. I. Fokina, I. Yu. Denisyuk, Yu. É. Burunkova, and L. N. Kaporskiĭ, "Formation of microstructures based on UV-hardenable acrylates," J. Opt. Technol. 75, 664-669 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. Berkel, B. McGarvey, and J. Clarke, “Microlens arrays for 2D large-area image sensors,” Pure Appl. Opt. 3, 177 (1994).
  2. M. Wu and G. Whitsides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12, 747 (2002). [CrossRef]
  3. A. G. Olszak and M. R. Descour, “Microscopy in multiples,” IEEE OE Mag. 5, No. 5, 16 (2005).
  4. M. Savolainen, K. E. Peiponen, P. Savander, R. Silvennoinen, and H. Vehviläinen, “Novel optical techniques for window-glass inspection,” Meas. Sci. Technol. 6, 1016 (1995).
  5. N. D. Tolstoba, “Gram-Schmidt technique for aberration analysis in telescope mirror testing,” Proc. SPIE 3785, 140 (1999).
  6. X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, “Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532nm,” Pure Appl. Opt. 8, 672 (2006).
  7. T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Mizawa, “Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006). [CrossRef]
  8. M. Deubel, M. Vegener, A. Kaso, and S. John, “Direct laser writing and characterization of 'Slanted Pore' Photonic Crystals,” Appl. Phys. Lett. 85, 1895 (2004). [CrossRef]
  9. T. N. Khatsevich and I. O. Mikhaĭlov, Endoscopy. A Textbook (SGGA, Novosibirsk, 2002).
  10. F. Schiappellia, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion-beam milling,” Microelectron. Eng. 73-74, 397 (2004).
  11. V. P. Veĭko, Yu. D. Berezin, and V. A. Chuĭko, “Laser technologies for forming fiber-optics instruments,” Izv. Ross. Akad. Nauk, Ser. Fiz. 61, 1627 (1997).
  12. S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D.: Appl. Phys. 36, 2451 (2003).
  13. S. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13, 98 (2002). [CrossRef]
  14. Th. Hessler, M. Rossi, J. Pedersen, M. T. Gale, M. Wegner, D. Steudle, and H. J. Tiziani, “Microlens arrays with spatial variation of the optical function,” Pure Appl. Opt. 6, 673 (1997). [CrossRef]
  15. K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279 (1997). [CrossRef]
  16. Jun Yao, Zheng Cui, Fuhua Gao, Yixiao Zhang, and Feng Gao, “Design of hybrid micro optical elements with coded gray-tone mask,” Microelectron. Eng. 57-58, 793 (2001).
  17. M. Tormen, L. Businaro, M. Altissimo, F. Romanato, S. Cabrini, F. Perennes, R. Proietti, Hong-Bo Sun, Satoshi Kawata, and E. Di Fabrizio, “3D patterning by means of nanoimprinting, X-ray and two-photon lithography,” Microelectron. Eng. 73-74, 535 (2004).
  18. M. I. Fokina and I. Yu. Denisyuk, “Forming lattices of microlenses by the method of dosed photopolymerization of UV-hardened optical composites,” Opt. Zh. 73, No. 11, 90 (2006) M. I. Fokina and I. Yu. Denisyuk,[J. Opt. Technol. 73, 815 (2006)].
  19. T. V. Smirnova, Yu. É. Burunkova, and I. Yu. Denisyuk, “Measuring the shrinkage of UV-hardenable composites based on acrylates and diacrylates,” Opt. Zh. No. 5, 57 (2006) T. V. Smirnova, Yu. É. Burunkova, and I. Yu. Denisyuk,J. Opt. Technol. 73, 352 (2006).
  20. M. Fokina, “Optical surface making by UV-curing of monomeric compositions in near field of coherent light source,” Mol. Cryst. No. 468, 33/[385]-42/[394] (2007).
  21. A. S. Berezkina, “The effect of the type and concentration of dye on the formation of a microelement at the end of an optical fiber,” in Collection of the Articles of the Fourth Interindustry Conference of Young Scientists of St. Petersburg, St. Petersburg, SPbGU ITMO, 2007, pp. 12-16.
  22. M. I. Fokina, J. E. Burunkova, and I. Yu. Denisuk, “Influence of photoactive additive on growth of polymer microelements on the top of optical fiber,” Proc. SPIE 6732, 673215 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited