OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 75, Iss. 12 — Dec. 1, 2008
  • pp: 792–799

Metamaterials and the problem of creating invisible objects. 1. Objects with size less than a wavelength

M. P. Shepilov and A. A. Zhilin  »View Author Affiliations

Journal of Optical Technology, Vol. 75, Issue 12, pp. 792-799 (2008)

View Full Text Article

Acrobat PDF (99 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metamaterials have undergone intense development in the past decade. These are artificial materials consisting of structural elements whose form and relative position can be specified during fabrication. It has been shown to be possible to adjust the electric and magnetic responses of such materials to the action of electromagnetic radiation within wide limits. This has made it possible not only to create metamaterials with a negative refractive index but also to pose the question of the possibility of creating invisible objects. Intense discussion of the problem of creating invisible objects began in 2005, so that there are by now several dozen papers on this topic. This paper presents the first part of a review of the problem of creating invisible objects, concentrating on objects whose size is less than a wavelength of electromagnetic radiation.

© 2008 Optical Society of America

M. P. Shepilov and A. A. Zhilin, "Metamaterials and the problem of creating invisible objects. 1. Objects with size less than a wavelength," J. Opt. Technol. 75, 792-799 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, No. 5781, 1777 (2006). [CrossRef]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, No. 5781, 1780 (2006). [CrossRef]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996). [CrossRef]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low-frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998). [CrossRef]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999). [CrossRef]
  7. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5514, 77 (2001). [CrossRef]
  9. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” 12, 1106 (2006).
  10. A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008) A. A. Zhilin and M. P. Shepilov [J. Opt. Technol. 75, 255 (2008)].
  11. R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36, 1443 (1988). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1970).
  13. J. Ward, “Towards invisible glass,” Vacuum 22, No. 9, 369 (1972).
  14. N. S. Andreev, “Scattering of visible light by glasses undergoing phase separation and homogenization,” J. Non-Cryst. Solids 30, 99 (1978). [CrossRef]
  15. C. B. Walker and A. Guinier, “An x-ray investigation of age hardening in alag,” Acta Metall. 1, 568 (1953). [CrossRef]
  16. A. V. Shatilov, “Anomalous scattering as a case of scattering at a system of particles,” Opt. Spectrosc. 13, 728 (1962).
  17. M. Goldstein, “Theory of scattering for diffusion-controlled phase separation,” J. Appl. Phys. 34, 1928 (1963). [CrossRef]
  18. C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
  19. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am. 65, 376 (1975).
  20. H. Chew and M. Kerker, “Abnormally low electromagnetic scattering cross sections,” J. Opt. Soc. Am. 66, 445 (1976).
  21. M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B 26, 4052 (1982). [CrossRef]
  22. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242 (1951). [CrossRef]
  23. A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005). [CrossRef]
  24. A. Alù and N. Engheta, “Erratum: 'Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers' [J. Appl. Phys. 97, 094310 (2005)],” J. Appl. Phys. 99, 069901 (2006). [CrossRef]
  25. V. G. Veselago, “Electrodynamics of substances with simultaneously negative ε and μ,” Usp. Fiz. Nauk 92, 517 (1967).
  26. X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006). [CrossRef]
  27. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904). [CrossRef]
  28. X. Zhou and G. Hu, “Linear and nonlinear dielectric properties of particulate composites at finite concentration,” Appl. Math. and Mech. 27, 1021 (2006).
  29. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318 (2007). [CrossRef]
  30. A. Alù and N. Engheta, “Cloaking and transparency for collection of particles with metamaterial and plasmonic covers,” Opt. Express 15, 7578 (2007). [CrossRef]
  31. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008). [CrossRef]
  32. F. Caruso, M. Spasova, V. Salgueiriso-Maceira, and L. M. Liz-Marzán, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Math. 13, 1090 (2001).
  33. CST Design Studiotrade 2006B, www.cst.com.
  34. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited