OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 75, Iss. 4 — Apr. 1, 2008
  • pp: 211–217

Estimating the relaxation times of “lattice” translational quasi-particle excitations in liquid systems on the basis of long-wavelength IR spectra in the cluster-continuum approximation

V. N. Demidov  »View Author Affiliations

Journal of Optical Technology, Vol. 75, Issue 4, pp. 211-217 (2008)

View Full Text Article

Acrobat PDF (95 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quasi-lattice translational vibrational transitions in liquid systems, accompanied by energy absorption in the low-frequency IR spectral region, and the relaxation of excited vibrational states are interpreted in terms of the theory of autovibrational processes. By using a one-dimensional iterated mapping of a sequence in the form of recursion relations of the theory of autovibrations, a relationship is found between the relaxation times of phononlike “lattice” translational quasi-particle vibrational excitations in liquid systems and the corresponding vibrational frequencies, and the relaxation times are also estimated for a number of nonpolar, polar, and associated molecular liquids. The problem of the applicability of the quantum-mechanical indeterminacy relation for energy and time in low-frequency IR spectroscopy is discussed.

© 2008 Optical Society of America

V. N. Demidov, "Estimating the relaxation times of “lattice” translational quasi-particle excitations in liquid systems on the basis of long-wavelength IR spectra in the cluster-continuum approximation," J. Opt. Technol. 75, 211-217 (2008)

Sort:  Year  |  Journal  |  Reset


  1. N. G. Bakhshiev, Photophysics of Dipole-Dipole Interactions: Solvation and Complex-Formation Processes (SPb GU, St. Petersburg, 2005).
  2. V. S. Libov, “Low-frequency spectroscopy of intermolecular vibrations in disordered condensed media,” Opt. Zh. No. 8, 3 (1996) V. S. Libov, [J. Opt. Technol. 63, 567 (1996)].
  3. L. Landau and J. Rumer, Phys. Z. Sowjetunion 11, 18 (1937).
  4. I. G. Kuleev, I. I. Kuleev, A. P. Tankeev, and I. Yu. Arapova, “Relaxation of thermal and high-frequency transverse phonons in semiconductor cubic crystals,” in Abstracts of Reports of the Fifth Youth Seminar on Problems of the Physics of the Condensed State of Matter, Ekaterinburg: Ural Section, Russian Academy of Sciences, Institute of the Physics of Metals, 2004, p. 3.
  5. P. D. Golub', “Phonon processes in polymers,” Fund. Prob. Sovrem. Materialoved. No. 1, 120 (2004).
  6. P. D. Golub', “Study of molecular motion and relaxation processes in polymers by an ultraacoustic method at helium temperatures,” Author's abstract of doctoral dissertation, Moscow, 1973.
  7. O. V. Krylov and B. R. Shub, Nonequilibrium Processes in Catalysis (Khimiya, Moscow, 1990).
  8. N. V. Karlov and N. A. Kirichenko, Vibrations, Waves, and Structures (Fizmatlit, Moscow, 2003).
  9. S. P. Kuznetsov, Dynamic Chaos. Modern Theory of Vibrations and Waves (Fizmatlit, Moscow, 2006).
  10. V. N. Demidov, “An expression for the frequencies of the spectral bands of quasi-lattice translational vibrations of liquids in terms of a new thermodynamic model,” Opt. Zh. 70, No. 9, 3 (2003) V. N. Demidov, [J. Opt. Technol. 70, 623 (2003)].
  11. V. N. Demidov, “Cluster thermodynamic model of intermolecular interactions in liquids,” Dok. Ross. Akad. Nauk 394, No. 2, 218 (2004).
  12. V. N. Demidov, “Determining the contributions of various types of intermolecular interactions to the translational vibrational frequencies of liquids, based on the cluster-continuum model,” Opt. Zh. 72, No. 4, 3 (2005) V. N. Demidov, [J. Opt. Technol. 72, 291 (2005)].
  13. V. N. Demidov, V. G. Puzenko, and A. I. Savinova, “Representation of cluster structure-energy parameters of interparticle interactions in liquids as statistically associative averaged quantities of transferable contributions of the cluster fragments,” Vestnik SPb GU. Ser. 4 4, 55 (2005).
  14. B. N. Grebenshchikov, “An analog of the Clausius-Clapeyron equation,” Tr. Uzbeks. Gos. Univ. 9, 117 (1937).
  15. Ya. I. Frenkel', Kinetic Theory of Liquids (Moskva-Izhevsk: NITs Regulyarnaya i Khaoticheskaya Dinamika, 2004).
  16. V. S. Anishchenko, V. V. Astakhov, T. E. Vadivasova, A. B. Neĭman, G. I. Strelkova, and L. Shimanskiĭ-Gaĭer, Nonlinear Effects in Chaotic and Stochastic Systems (Moskva-Izhevsk: Inst. Kompyut. Issled., 2003).
  17. N. A. Smirnova, Methods of Statistical Thermodynamics in Physical Chemistry (Vyssh. Shkola, Moscow, 1982).
  18. H. A. Bethe and R. W. Jackiw, Intermediate Quantum Mechanics (Benjamin/Cummings, Menlo Park, Calif., 1986; H. A. Bethe and R. W. Jackiw, Intermediate Quantum MechanicsMir, Moscow, 1965).
  19. R. L. Flurry, Jr., Quantum Chemistry: An Introduction (Prentice-Hall, Englewood Cliffs, N.J., 1983; R. L. Flurry, Jr., Quantum Chemistry: An IntroductionMir, Moscow, 1985).
  20. A. S. Kholevo, Probability and Statistical Aspects of Quantum Theory (Moskva-Izhevsk: Inst. Kompyut. Issled., 2003).
  21. V. S. Libov and T. S. Perova, “Low-frequency spectroscopy of intermolecular interactions in condensed media,” Tr. Gos. Opt. Inst. 81, No. 215, 1 (1992).
  22. V. S. Libov, “Spectroscopy of resonance intermolecular interactions in liquids and solutions,” in Solvatochromy: Problems and Methods (Leningr. Gos. Univ., Leningrad, 1989), pp. 55-121.
  23. M. F. Vuks, A. K. Atakhodzhaev, and F. Kh. Tukhvatullin, “The wing of the Rayleigh-scattering line of light in a liquid and relaxation phenomena,” in Modern Problems of Physical Chemistry, v. 5 of Questions of Molecular Optics (Mosk. Gos. Univ., Moscow, 1970), pp. 210-222.
  24. Ya. Yu. Akhadov, Dielectric Properties of Pure Liquids ( Moscow, 1972).
  25. M. F. Vuks, Light Scattering in Gases, Liquids, and Solutions (Leningr. Gos. Univ., Leningrad, 1977).
  26. N.D.Sokolov and V.M.Chulanovskiĭ, eds., The Hydrogen Bond. A Collection of Articles of the Academy of Sciences of the USSR (Nauka, Moscow, 1964).
  27. V. N. Demidov, V. G. Puzenko, and V. S. Libov, “Evidence of cluster translational vibrational dynamics in the low-frequency IR spectra of molecular liquids,” Opt. Zh. 72, No. 7, 3 (2005) V. N. Demidov, V. G. Puzenko, and V. S. Libov, [J. Opt. Technol. 72, 501 (2005)].
  28. N. Bohr, “Discussion with Einstein of problems of the theory of perception in atomic physics,” in Collected Scientific Works, vol. 2 (Nauka, Moscow, 1971), pp. 349-433.
  29. N. G. Bakhshiev, “On the statistical nature of the formation of low-frequency vibrational spectra of associated liquids,” Opt. Spektrosk. 80, 55 (1996) N. G. Bakhshiev, [J. Opt. Technol. 80, 46 (1996)].
  30. V. N. Demidov, V. G. Puzenko, and A. I. Savinova, “Structural thermodynamic analysis of the relationship between the half-width and the position of the absorption-band maxima in the low-frequency IR spectra of liquid systems,” Opt. Zh. No. 4, 9 (2007) V. N. Demidov, V. G. Puzenko, and A. I. Savinova, [J. Opt. Technol. 74, 230 (2007)].
  31. I. Tinoko, K. Zauér, J. Véng, and J. Paglisi, Physical Chemistry. Principles and Application in the Biological Sciences (Tekhnosfera. Mir Khimii, Moscow, 2005).
  32. M. Bunge, Philosophy of Physics (Reidel, Dordrecht, 1973; M. Bunge, Philosophy of PhysicsEditorial URSS, Moscow, 2003).
  33. I. Prigozhin, From the Existent to the Nascent: Time and Complexity in the Physical Sciences (Editorial UrSS, Moscow, 2002).
  34. P. W. Atkins, Quanta: A Handbook of Concepts (Oxford University Press, Oxford, 1991; P. W. Atkins, Quanta: A Handbook of ConceptsMir, Moscow, 1977).
  35. A. Salem and E. P. Wigner, Aspects of Quantum Theory (Cambridge University Press, 1972).
  36. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972; J. M. Ziman,Principles of the Theory of SolidsMir, Moscow, 1974).
  37. W. Horsthemke and R. Lefever, Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer-Verlag, Berlin, 1984; W. Horsthemke and R. Lefever, Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and BiologyMir, Moscow 1987).
  38. V. I. Chizhik, Nuclear Magnetic Relaxation (Izd. Leningr. Gos. Univ., Leningrad, 1991).
  39. E. A. Moelwyn-Hughes, Physical Chemistry, vols. 1 and 2 (Pergamon Press, Oxford, 1961; E. A. Moelwyn-Hughes, Physical Chemistry,Inost. Lit., Moscow, 1962).
  40. H. S. Sandhu, “NMR spin-lattice relaxation time in liquid bromophorm,” J. Magn. Reson. (1969-1992) 34, No. 1, 147 (1979). [CrossRef]
  41. G. B. Litinskiĭ, “Dielectric properties of polar liquids. Model of inhibited rotation of molecules,” Khim. Fiz. 18, No. 2, 55 (1999).
  42. V. I. Gaĭduk, T. A. Novskova, and B. M. Tseĭtlin, “Description of orientational relaxation by means of an effective potential. On the possibility of a structural transition in polar liquids,” Khim. Fiz. 17, No. 5, 50 (1998).
  43. I. I. Adamenko, N. A. Atamas', L. A. Bulavin, and V. E. Pogorelov, “Vibrational and orientational relaxation of molecules of chlorobenzene and bromobenzene,” Zh. Fizich. Khimii 70, No. 1, 97 (1996).
  44. A. S. Krauze, “Dynamics of molecules of aprotic solutions in ionic solutions,” Author's abstract of doctoral dissertation, Ufa: Ufimsk. Gos. Aviatsion. Tekhnich. Univ., 2004.
  45. D. V. Ivlev, “The role of multiparticle correlations in the variation of the thermodynamic and kinetic parameters of heptane-methanol and tertiary butanol-water mixtures,” Author's abstract of candidate's dissertation, Ivanovo, Inst. Khimii Rastvorov, RAN, 2002.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited