OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 75, Iss. 4 — Apr. 1, 2008
  • pp: 255–265

Metamaterials with negative refractive index

A. A. Zhilin and M. P. Shepilov  »View Author Affiliations


Journal of Optical Technology, Vol. 75, Issue 4, pp. 255-265 (2008)
http://dx.doi.org/10.1364/JOT.75.000255


View Full Text Article

Acrobat PDF (575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a review of the literature data on the development and investigation of metamaterials with negative refractive index--artificial materials consisting of structural elements whose form and relative arrangement can be specified during fabrication. Intensive studies are described that were carried out in recent decades and that led to the creation in 2003 of metamaterials that demonstrate negative refractive index in the gigahertz frequency range. New trends are pointed out that have made it possible to obtain metamaterials with negative refractive index in the near-IR region.

© 2008 Optical Society of America

Citation
A. A. Zhilin and M. P. Shepilov, "Metamaterials with negative refractive index," J. Opt. Technol. 75, 255-265 (2008)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-75-4-255


Sort:  Year  |  Journal  |  Reset

References

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1973).
  2. L. I. Mandel'shtam, “Lectures on some problems of the theory of vibrations” (1944) (see Complete Collected Works (Akad.Nauk SSSR, Moscow, 1950), vol. 5, pp. 428-467.
  3. V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of epsi and μ,” Usp. Fiz. Nauk 92, 517 (1967).
  4. H. Lamb, “On group-velocity,” Proc. London Math. Soc. 1, 473 (1904). [CrossRef]
  5. A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904).
  6. L. I. Mandel'shtam, “Group velocity in a crystal lattice,” Zh. Eksp. Teor. Fiz. 15, 475 (1945).
  7. V. Veselago, L. Braginsky, V. Shklover, and C. Hafner, “Negative refraction index materials,” J. Comp. Theor. Nanoscience 3No. 2, 1 (2006).
  8. S. A. Tretyakov, “Research on negative refraction and backward-wave media: A historical perspective,” in Collection of Papers of EPFL Latsis Symposium 2005, Negative refraction: revisiting electromagnetics from microwaves to optics, Lausanne, 28.2-2.03.2005, pp. 30-35.
  9. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005). [CrossRef]
  10. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996). [CrossRef]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” Intensive Care Med. 47, 2075 (1999).
  12. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]
  13. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5541, 77 (2001). [CrossRef]
  14. J. P. Kotthaus and V. Jaccarino, “Antiferromagnetic-resonance line widths in MnF2,” Phys. Rev. Lett. 28, 1649 (1972). [CrossRef]
  15. P. Grunberg and F. Metawe, “Light scattering from bulk and surfaces pin waves in EuO,” Phys. Rev. Lett. 39, 1561 (1977). [CrossRef]
  16. R. E. Camley and D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280 (1982). [CrossRef]
  17. L. Remer, B. Luthi, H. Sauer, R. Geick, and R. E. Camley, “Nonreciprocal optical reflection of the uniaxial antiferromagnet MnF2,” Phys. Rev. Lett. 56, 2752 (1986). [CrossRef]
  18. T. Dumelow, R. E. Camley, K. Abraha, and D. R. Tilley, “Nonreciprocal phase behavior in reflection of electromagnetic waves from magnetic materials,” Phys. Rev. B 58, 897 (1998). [CrossRef]
  19. J. B. Pendry and S. O'Brien, “Very-low-frequency plasma,” J. Phys.: Condens. Matter 14, 7409 (2002).
  20. S. O'Brien, D. MacPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004). [CrossRef]
  21. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998). [CrossRef]
  22. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer, Berlin, 1980).
  23. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  24. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Kontenbah, and M. H. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell's law,” Phys. Rev. Lett. 90, 107401 (2003). [CrossRef]
  25. K. Li, S. J. McLean, R. B. Greegor, C. G. Parazzoli, and M. H. Tanielian, “Free-space focused-beam characterization of left-handed materials,” Appl. Phys. Lett. 82, 2535 (2003). [CrossRef]
  26. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004). [CrossRef]
  27. P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929 (2002). [CrossRef]
  28. A.-C. Hsu, Y. K. Cheng, K. H. Chen, J. L. Chern, S. C. Wu, C. F. Chen, H. Chang, Y. H. Lien, and J. T. Shy, “Far-infrared resonance in split-ring resonators,” J. Phys. Soc. Jpn. 43, L176 (2004).
  29. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]
  30. K. Yu. Bliokh and R. K. Bliokh, “What are the left-handed media and what is interesting about them?,” Phys. Usp. 174, 439 (2004) K. Yu. Bliokh and R. K. Bliokh, “What are the left-handed media and what is interesting about them?,”[Phys. Usp. 47, 393 (2004).]
  31. P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002). [CrossRef]
  32. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002). [CrossRef]
  33. G. W. Hooft, “Comment on 'Negative Refraction Makes a Perfect Lens',” Phys. Rev. Lett. 87, 249701 (2001). [CrossRef]
  34. J. B. Pendry and D. R. Smith, “Comment on 'Wave refraction innegative-index media: Always positive and very inhomogeneous',” Phys. Rev. Lett. 90, 029703 (2003). [CrossRef]
  35. J. Pacheco, T. M. Grzegorczyk Jr., B.-I. Wu, Y. Zhang, and J. A. Kong, “Power propagation in homogeneous isotropic frequency-dispersive left-handed media,” Phys. Rev. Lett. 89, 257401 (2002). [CrossRef]
  36. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refraction index,” Phys. Rev. Lett. 90, 107402 (2003). [CrossRef]
  37. P. F. Loschiapo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, “Electromagnetic waves focused by a negative-index planar lens,” Phys. Rev. E 67, 025602 (2003). [CrossRef]
  38. J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286 (2002). [CrossRef]
  39. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003). [CrossRef]
  40. P. Kolinko and D. Smith, “Numerical study of electromagnetic waves interacting with negative index materials,” Opt. Express 11, 640 (2003).
  41. S. A. Cummer, “Simulated causal subwavelength focusing by a negative refractive index slab,” Appl. Phys. Lett. 82, 1503 (2003). [CrossRef]
  42. X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003). [CrossRef]
  43. X. Huang and L. Zhou, “Modulating image oscillations in focusing by a metamaterial lens: Time-dependent Green's function approach,” Phys. Rev. B 74, 045123 (2006). [CrossRef]
  44. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003). [CrossRef]
  45. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit witha planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004). [CrossRef]
  46. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterials coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  47. X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006). [CrossRef]
  48. F. J. Garcia de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005). [CrossRef]
  49. G. V. Milton and N.-A. P. Nicoroviki, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. London, Ser. A 462, 3027 (2006). [CrossRef]
  50. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006). [CrossRef]
  51. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006). [CrossRef]
  52. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulation of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006). [CrossRef]
  53. U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8, 118 (2006). [CrossRef]
  54. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photonics 1, 224 (2007).
  55. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000). [CrossRef]
  56. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004). [CrossRef]
  57. C. M. Soukoulis, “Bending back light: The science of negative index materials,” Opt. Photonics News 17(6), 18 (2006).
  58. X. Wang, Z. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two-dimensional photonic crystal,” Optics Express 12, 2919 (2004).
  59. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flatlens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005). [CrossRef]
  60. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: Going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006). [CrossRef]
  61. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004). [CrossRef]
  62. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94, 063901 (2005). [CrossRef]
  63. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Mid-infrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005). [CrossRef]
  64. L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002). [CrossRef]
  65. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351 (2004). [CrossRef]
  66. C. Enkrich, M. Wegener, F. Perez-Williard, S. Linden, J. Zhou, T. Koschny, and C. M. Soukoulis, “Optimizing the design parameters for split-ring resonators at telecommunication wavelength,” in Proceedings of the International Conference on Quantum Electronics and Laser Science, Baltimore, May 2005, pp. 1535-1536.
  67. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef]
  68. A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318 (1996). [CrossRef]
  69. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Anal. Chem. USSR 11, 65 (2002).
  70. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” Opt. Express 11, 735 (2003).
  71. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. 7, S32 (2005).
  72. N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nonocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005). [CrossRef]
  73. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005). [CrossRef]
  74. V. P. Drachev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimec, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 1, 49 (2006). [CrossRef]
  75. A. V. Kildishev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refraction index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23, 423 (2006). [CrossRef]
  76. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93, 197401 (2004). [CrossRef]
  77. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index materials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited