OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 75, Iss. 9 — Sep. 1, 2008
  • pp: 563–573

Adaptive lenses based on liquid crystals

G. E. Nevskaya and M. G. Tomilin  »View Author Affiliations


Journal of Optical Technology, Vol. 75, Issue 9, pp. 563-573 (2008)
http://dx.doi.org/10.1364/JOT.75.000563


View Full Text Article

Acrobat PDF (765 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper discusses the principles and theoretical foundations of the construction of various types of adaptive lenses based on liquid crystals. It is shown how they have evolved from lenses that operate in polarized light with long focusing times to lenses that operate in unpolarized light with increased aperture and response rate and enhanced image quality. The possibilities of using them in optical systems are discussed.

© 2008 Optical Society of America

Citation
G. E. Nevskaya and M. G. Tomilin, "Adaptive lenses based on liquid crystals," J. Opt. Technol. 75, 563-573 (2008)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-75-9-563


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. W. Berreman, “Variable-focus LC-lens system,” US Patent 4 190 330 (1980).
  2. S. Sato, “LC lens-cell with variable focal length,” Jpn. J. Appl. Phys. 18, 1679 (1979). [CrossRef]
  3. S. T. Kowel and D. S. Cleverly, “Focusing by electrical modulation of refraction in a LC cell,” Proceedings of NASA Conference on Optical Information Processing for Aerospace Applications, Virginia, USA, 1981, pp. 329-340.
  4. N. A. Riza and M. C. DeJule, “3-terminal adaptive NLC lens device,” Opt. Lett. 19, 1013 (1994).
  5. M. C. Chan and S. T. Kowel, “Imaging performance of the LC adaptive lens with conductive ladder meshing,” Appl. Opt. 36, 8958 (1997). [CrossRef]
  6. T. Nose and S. Sato, “A liquid-crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425 (1989). [CrossRef]
  7. T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).
  8. G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable LC Fresnel lens,” Proc. SPIE 1168, 352 (1989).
  9. C. W. Fowler and E. S. Pateras, “LC lens review,” Opthal. Physiolog. Optics 10, 186 (1990).
  10. A. Yu. Gvozdarev, I. B. Yudin, G. E. Nevskaya, and B. I. Yudin, “Calculating the deformation of the director in an axially symmetric electric field of an LC microlens,” in Transactions of the Fourth All-Union Conference APÉP-98, 1988, vol. 6, pp. 17-22.
  11. T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 331, 235 (1999). [CrossRef]
  12. M. Ye and S. Sato, “Dynamic director's behavior in LC microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 113 (2000). [CrossRef]
  13. S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation analysis of design concept for optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 40, 6514 (2001). [CrossRef]
  14. M. Honma, T. Nose, and S. Sato, “Improvement of aberration properties of liquid-crystal microlenses using the stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 40, 1322 (2001). [CrossRef]
  15. A. F. Naumov, M. J. Loktev, I. R. Guralnik, and G. V. Vdovin, “Modal liquid crystal adaptive lenses,” Preprint No. 36, General Phys. Inst. of Russian Academy of Sciences, 1998.
  16. G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)]. [CrossRef]
  17. G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)]. [CrossRef]
  18. I. R. Gural'nik and S. A. Samargin, “Electrophysical and optical properties of spherical and cylindrical liquid-crystal optically addressed lenses,” Kvantovaya Elektron. (Moscow) 34, 673 (2004) I. R. Gural'nik and S. A. Samargin, [Quantum Electron. 34, 673 (2004)]. [CrossRef]
  19. A. Gvozdarev and G. E. Nevskaya, “Nematic deformation in homeotropically aligned liquid-crystal microlens and its optical properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 4, 364 (2001).
  20. A. Yu. Gvozdarev and G. E. Nevskaya, “Optical characteristics of liquid-crystal microlenses with planar and hybrid orientation of a nematic,” Opt. Zh. 68, No. 9, 61 (2001) A. Yu. Gvozdarev and G. E. Nevskaya, [J. Opt. Technol. 68, 687 (2001)].
  21. M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys., Part 1 40, 6012 (2001). [CrossRef]
  22. T. Nose and S. Sato, “Application of a liquid-crystal microlens to an optical-fiber switch,” in Electronics and Communication in Japan, 1992, part 2, vol. 75-C-1, No. 3, pp. 155-163.
  23. A. Gvozdarev and G. E. Nevskaya, “Optical properties of homogeneously and hybrid-aligned liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329, 81 (1999). [CrossRef]
  24. A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” Opt. Zh. 68, No. 9, 55 (2001) A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, [J. Opt. Technol. 68, 682 (2001)].
  25. A. V. Morozov, “Study of the electrooptic properties of multidomain LC structures obtained by using surface-active substances,” Author's abstract of candidate's dissertation, 2005.
  26. T. Scharf, P. Kipfer, M. Bouvier, and J. Grupp, “Diffraction-limited liquid-crystal microlenses with planar alignment,” Jpn. J. Appl. Phys., Part 1 39, 6629 (2000). [CrossRef]
  27. T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystals microlens,” Mol. Cryst. Liq. Cryst. 199, 27 (1991). [CrossRef]
  28. G. E. Nevskaya and A. Gvozdarev, “Analysis of phase retardation profiles in LC microlenses with different nematic alignment,” Proc. of the Fourth Korea-Russia International Symposium on Science and Technology, 2000, part 1, pp. 126-130.
  29. A. Gvozdarev and G. E. Nevskaya, “Comparison of electrooptical properties of asymmetrical liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Opt. 4, 358 (2001).
  30. A. Gvozdarev and G. E. Nevskaya, “Optical properties of homeotropical aligned liquid-crystal microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 304, 423 (1997). [CrossRef]
  31. T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid-crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys., Part 1 30, 2110 (1991). [CrossRef]
  32. S. Masuda, H. Ito, T. Nose, and S. Sato, “Optical properties of a liquid-crystal microlens with a deflection function,” in Photonics in Switching, Sendai, 1996, pp. 21-25.
  33. T. Nose, S. Masuda, and S. Sato, “A liquid-crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., Part 1 31, 1643 (1992). [CrossRef]
  34. S. Masuda, S. Fulioka, M. Honma, and S. Sato, “Dependence of optical properties on device and material parameters in liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 35, 4668 (1996). [CrossRef]
  35. S. Masuda, M. Honma, T. Nose, and S. Sato, “Influence of elastic constants on the optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 36, 2765 (1997). [CrossRef]
  36. S. Sato and T. Nose, “Improvement of optical properties and beam steering function in liquid-crystal microlens with an extra controlling electrode by a planar structure,” Jpn. J. Appl. Phys., Part 1 39, 6383 (2000). [CrossRef]
  37. S. Masuda, S. Takahashi, T. Nose, and S. Sato, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772 (1997). [CrossRef]
  38. M. Ye, M. Honma, and S. Sato, “Improvement of decay properties of a liquid-crystal microlens with a divided electrode structure,” Jpn. J. Appl. Phys., Part 1 38, 1412 (1999). [CrossRef]
  39. T. Nose, J. Yamada, and S. Sato, “Molecular orientation effect in LC cell using inhomogeneous electric field with extra controlling electrodes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 231 (2001). [CrossRef]
  40. M. Honma, T. Nose, and S. Sato, “Enhancement of numerical aperture of liquid-crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 39, 4799 (2000). [CrossRef]
  41. M. Ye and S. Sato, “New liquid-crystal lens,” Proc. SPIE 4926, 75 (2002). [CrossRef]
  42. Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005). [CrossRef]
  43. M. Ye and S. Sato, “Liquid-crystal lens of two liquid-crystal layers,” Mol. Cryst. Liq. Cryst. 422, 197 (2004). [CrossRef]
  44. O. Pisnyak, S. Sato, and O. Lavrentovich, “Electrically tunable lenses based on dual-frequency NLC,” Appl. Opt. 45, 4576 (2006). [CrossRef]
  45. Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of switchable microlens arrays based on a liquid crystal,” in Lasers and Electro-Optics Society, 2001, LEOS 2001, The Fourteenth Annual Meeting of the IEEE, vol. 2, pp. 618-619.
  46. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Exp. 4, 344 (1999).
  47. M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000). [CrossRef]
  48. I. R. Guralnik and S. A. Samagin, “High-sensitivity optically addressed liquid-crystal lens,” Proc. SPIE 5137, 194 (2003). [CrossRef]
  49. I. R. Gural'nik and S. A. Samagin, “Optically controlled spherical liquid-crystal lens: theory and experiment,” Kvantovaya Elektron. (Moscow) 33, 430 (2003) I. R. Gural'nik and S. A. Samagin, [Quantum Electron. 33, 430 (2003)]. [CrossRef]
  50. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992 (1998). [CrossRef]
  51. I. R. Guralnik and S. Samagin, “Experimental implementation of the high-sensitivity liquid-crystal lens with optically controlled focal length,” Proc. SPIE 4986, 673 (2003). [CrossRef]
  52. Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals,” Proc. SPIE 5289, 63 (2004). [CrossRef]
  53. H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22 (2003). [CrossRef]
  54. Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).
  55. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosize PDLC droplets,” Opt. Commun. 247, 101 (2005). [CrossRef]
  56. H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lenses using liquid-crystal concentration redistribution,” Appl. Phys. Lett. 88, 1911116-1-6 (2006).
  57. P. F. Brinkley and S. T. Kowel, “Liquid-crystal adaptive lens: operation and aberration,” Proc. SPIE 1773, 449 (1993). [CrossRef]
  58. H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.
  59. T. Nose and S. Sato, “Application of LC microlens to an optical fiber switch,” Electronics and communications in Japan, 1992, part 2, vol. 75, No. 11, pp. 1-10.
  60. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001). [CrossRef]
  61. F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000). [CrossRef]
  62. M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].
  63. M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002). [CrossRef]
  64. G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Exp. 11, 810 (2003).
  65. G. Vdovin, M. Loktev, and X. Zhang, “Adaptive Optics for Industry and Medicine,” Proceedings of the Fourth International Workshop, Münster, Germany, October 2003, pp. 19-24.
  66. S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Klark, G. D. Love, A. F. Naumov, C. D. Saunter, and M. Loktev, “Modal LC front corrector,” Opt. Express 10, 1258 (2002).
  67. A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-Crystal intraocular adaptive lens with wireless control,” Opt. Express 15, 7468 (2007). [CrossRef]
  68. A. F. Naumov and G. D. Love, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Express 4, 344 (1999).
  69. N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).
  70. M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001). [CrossRef]
  71. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, “Modal LC devices in optical tweezing 3D control and oscillating potential wells,” Opt. Express 14, 4525 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited