OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 76, Iss. 12 — Dec. 1, 2009
  • pp: 787–790

CdHgTe-based nanostructures for photodetectors

S. A. Dvoretskiĭ, Z. D. Kvon, N. N. Mikhaĭlov, V. A. Shvets, A. L. Aseev, B. Wittmann, S. N. Danilov, and S. D. Ganichev  »View Author Affiliations

Journal of Optical Technology, Vol. 76, Issue 12, pp. 787-790 (2009)

View Full Text Article

Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the results of growing quantum wells based on HgTe (HgTe/Cd0.735Hg0.265Te) 16.2 and 21nm thick on substrates of (013) CdTe/ZnTe/GaAs by molecular-beam epitaxy. The composition and thickness of the spacer and of the quantum well were monitored by an ellipsometric technique during growth. Galvanomagnetic studies in a wide range of magnetic fields (1-12T) at temperatures close to that of liquid helium (4.2K) showed that a two-dimensional electron gas is present in the nanostructures and that the levels are quantized. High mobilities were obtained for the two-dimensional electron gas: μe=2×105cm2/(V⋅sec) for an electron density of Ns=1.5×1011cm−2 and μe=5×105cm2/(V⋅sec) for Ns=3.5×1011cm−2. The circular and linear photogalvanic effects were studied in the quantum wells at room temperature in a wide wavelength interval: from the mid-IR (6-16μm) to the terahertz range (100-500μm).

© 2009 Optical Society of America

S. A. Dvoretskiĭ, Z. D. Kvon, N. N. Mikhaĭlov, V. A. Shvets, A. L. Aseev, B. Wittmann, S. N. Danilov, and S. D. Ganichev, "CdHgTe-based nanostructures for photodetectors," J. Opt. Technol. 76, 787-790 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. N. Schulman and T. C. McGill, “The CdTe/HgTe superlattice: Proposal for a new infrared material,” Appl. Phys. Lett. 34, 663 (1979). [CrossRef]
  2. M. W. Goodwin, M. A. Kinch, and R. J. Koestner, “Metal-insulator-semiconductor properties of HgTe-CdTe superlattices,” J. Vac. Sci. Technol. A 6, 2685 (1988). [CrossRef]
  3. J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003). [CrossRef]
  4. Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003). [CrossRef]
  5. Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004). [CrossRef]
  6. C. H. Grein, H. Jung, R. Singh, and M. E. Flatte, “Comparison of normal and inverted band structure of HgTe/CdTe superlattices for very long-wavelength infrared detector,” J. Electron. Mater. 34, 905 (2005). [CrossRef]
  7. S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford U. Press, 2006), pp. 75-78.
  8. S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).
  9. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International, Harrow, UK, 2005).
  10. S. D. Ganichev and E. L. Ivchenko, Spin Physics in Semiconductors, ed. M.I.Dyakonov (Springer, Berlin, 2008).
  11. B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).
  12. S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008). [CrossRef]
  13. X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited