OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 77, Iss. 9 — Sep. 1, 2010
  • pp: 565–576

Laser ceramic. 1. Production methods

S. G. Garanin, N. N. Rukavishnikov, A. V. Dmitryuk, A. A. Zhilin, and M. D. Mikhaĭlov  »View Author Affiliations

Journal of Optical Technology, Vol. 77, Issue 9, pp. 565-576 (2010)

View Full Text Article

Acrobat PDF (326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This section of this review discusses the main features of methods for producing a new laser material--a ceramic for the development of powerful next-generation solid-state lasers. A laser ceramic with a perfect crystalline structure and containing no impurities is virtually identical to microcrystals of the same composition in its spectral and laser characteristics. The main methods of synthesizing precursors for a laser ceramic and examples of the technological implementation of these methods are considered.

© 2010 Optical Society of America

S. G. Garanin, N. N. Rukavishnikov, A. V. Dmitryuk, A. A. Zhilin, and M. D. Mikhaĭlov, "Laser ceramic. 1. Production methods," J. Opt. Technol. 77, 565-576 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. L. Coble, “Transparent alumina and method of preparation,” U.S. Patent 3 026 210 (1962).
  2. R. Apetz and M. P. B. Van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86, 480 (2003). [CrossRef]
  3. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Ann. Rev. Mater. Res. 36, 397 (2006). [CrossRef]
  4. E. Carnall, S. E. Hatch, and W. F. Parsons, “Optical studies on hot-pressed polycrystalline CaF2 with clean grain boundaries,” Mater. Sci. Res. 3, 165 (1966).
  5. R. C. Andersson, “Transparent yttria-based ceramics and method for producing same,” U.S. Patent 3 545 987 (1970).
  6. R. C. Andersson, “Transparent zirconia-, hafnia-, and thoria-rare earth ceramics,” U.S. Patent 3 640 887 (1972).
  7. C. Greskovich and J. P. Chernoch, “Improved polycrystalline ceramic lasers,” J. Appl. Phys. 45, 4495 (1974). [CrossRef]
  8. G. With and H. J. A. Van Dijk, “Translucent Y3Al5O12 ceramics,” Mater. Res. Bull. 19, 1669 (1984). [CrossRef]
  9. M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare-earth (Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys. 69, 3709 (1991). [CrossRef]
  10. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033 (1995). [CrossRef]
  11. T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium-aluminium-garnet fine powder,” Japanese Patent 10-101333 (1998).
  12. C. Herring, “Effect of change of scale on sintering phenomena,” J. Appl. Phys. 21, 301 (1950). [CrossRef]
  13. S.-J. L. Kang, Sintering. Densification, Grain Growth, and Microstructure (Elsevier, Amsterdam, 2005).
  14. M. Sh. Akchurin, R. V. Gaĭnutdinov, R. M. Zakalyukin, and A. A. Kaminskiĭ, “Model of pore healing in the process of producing optical ceramics,” Dok. Ross. Akad. Nauk 415, 322 (2007) M. Sh. Akchurin, R. V. Gaĭnutdinov, R. M. Zakalyukin, and A. A. Kaminskiĭ, [Phys. Dokl. 52, 373 (2007)].
  15. F. F. Lange, “Sinterability of agglomerated powders,” J. Am. Ceram. Soc. 67, 83 (1984). [CrossRef]
  16. M. W. Barsoum, Fundamentals of Ceramics (IOP Publishing Ltd., Bristol and Philadelphia, 2003).
  17. J. G. J. Peelan, “Influence of MgO on the evolution of the microstructure of Al2O3,” Mater. Sci. Res. 10, 443 (1975).
  18. A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80, 1517 (1997). [CrossRef]
  19. A. Maotre, C. Salle, R. Boulesteix, J.-F. Baumard, and Y. Rabinovitch, “Effect of silica on the reactive sintering of polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 91, 406 (2008). [CrossRef]
  20. R. Boulesteix, A. Maotre, J.-F. Baumard, C. Salle, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31, 711 (2009). [CrossRef]
  21. V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8 (1995). [CrossRef]
  22. W. H. Rhodes, E. Q. Trickett, and D. J. Sordelet, “Key powder characteristics in sintered optical ceramics,” Ceram. Trans. 12, 677 (1990).
  23. J. Mouzon, “Synthesis of ytterbium-doped yttrium oxide nanoparticles and transparent ceramics,” PhD Thesis. LuleåUniversity of Technology, Department of Applied Physics and Mechanical Engineering, Division of Engineering Materials, 2006.
  24. A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29, 1289 (2007). [CrossRef]
  25. J. Li, Y. Wu, Y. Pan, W. Liu, L. An, S. Wang, and J. Guo, “Solid-state-reaction fabrication and properties of a high-doping Nd:YAG transparent laser ceramic,” Front. Chem. Eng. China 2, 248 (2008). [CrossRef]
  26. J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31, 6 (2008). [CrossRef]
  27. E. Gaffet and G. Caer, “Mechanical processing for nanomaterials,” in Encyclopedia of Nanoscience and Nanotechnology, ed. H.S.Nalwa (American Scientific Publishers, Bristol and Philadelphia, 2004), vol. 5, pp. 91-129.
  28. F. Miani, F. Maurigh, and F. Delogu, “Nanophase powders: mechanosynthesis,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, ed. C.I.Contescu and K.Putyera (CRC, Boca Raton, Florida, 2009), vol. 5, pp. 2923-2937.
  29. L. B. Kong, J. Ma, and H. Huang, “Low-temperature formation of yttrium aluminum garnet from oxides via a high-energy ball-milling process,” Mater. Lett. 56, 344 (2002). [CrossRef]
  30. H. Huang, H. Gong, D. Tang, and O. K. Tan, “Synthesis and characterization of yttrium aluminum garnet by high-energy ball milling,” Opt. Mater. 31, 716 (2009). [CrossRef]
  31. X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Transparent Nd:YAG ceramics fabricated using nanosized c-alumina and yttria powders,” J. Am. Ceram. Soc. 92, 241 (2009). [CrossRef]
  32. A. Ikesue and K. Yoshida, “Influence of pore volume on laser performance of Nd:YAG ceramics,” J. Mater. Sci. 34, 1189 (1999). [CrossRef]
  33. H. Gong, D. Tang, H. Huang, and J. Ma, “Fabrication of yttrium aluminum garnet transparent ceramics from yttria nanopowders synthesized by carbonate precipitation,” J. Electroceram. 23, 89 (2009). [CrossRef]
  34. Z. Librant, J. K. Jabczyński, H. Wȩglarz, A. Wajler, H. Tomaszewski, T. Łukasiewicz, W. Żendzian, and J. Kwiatkowski, “Preparation and characterization of transparent Nd:YAG ceramics,” Opto-Electron. Rev. 17, 72 (2009). [CrossRef]
  35. L. Chang-qing, Z. Hong-bo, Z. Ming-fu, H. Jie-cai, and M. Song-he, “Fabrication of transparent YAG ceramics by traditional solid-state-reaction method,” Trans. Nonferrous Met. Soc. China 17, 148 (2007). [CrossRef]
  36. J. Li, Y. Wu, Y. Pan, H. Kou, Y. Shi, and J. Guo, “Densification and microstructure evolution of Cr4+, Nd3+:YAG transparent ceramics for self-Q-switched laser,” Cer. Internat. 34, 1675 (2008). [CrossRef]
  37. Y. Takakimi, Y. Hideki, and Y. Hiroo, “Production of fine powder of yttrium aluminum garnet,” Japanese Patent 10-101411 (1998).
  38. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics--a new generation of solid-state laser and optical materials,” J. Alloys Compd. 341, 220 (2002). [CrossRef]
  39. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bison, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110-w ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25 (2004). [CrossRef]
  40. X. Hu, Q. Yang, C. Dou, J. Xu, and H. Zhou, “Fabrication and spectral properties of Nd3+-doped yttrium lanthanum oxide transparent ceramics,” Opt. Mater. 30, 1583 (2008). [CrossRef]
  41. K. Serivalsatit, B. Yazgan Kokuoz, B. Kokuoz, and J. Ballato, “Nanograined highly transparent yttria ceramics,” Opt. Lett. 34, 1033 (2009). [CrossRef]
  42. H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Influence of annealing conditions on the optical properties of chromium-doped ceramic Y3Al5O12,” Opt. Mater. 29, 392 (2006). [CrossRef]
  43. X. Li, “Fabrication of transparent yttrium aluminum garnet ceramic,” J. Physics: Conf. Ser. 152, 1 (2009).
  44. W. Jieqiang, X. Hongyan, W. Yong, and Y. Yunlong, “Effect of sulfate ions on YAG powders synthesized by microwave homogeneous precipitation,” J. Rare Earths 24, 284 (2006). [CrossRef]
  45. J. Li, T. Ikegami, J. Lee, T. Mori, and Y. Yajima, “Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant,” J. Eur. Ceram. Soc. 20, 2395 (2000). [CrossRef]
  46. S.-M. Sim, K. Keller A., and T.-I. Mah, “Phase formation in yttrium aluminum garnet powders synthesized by chemical methods,” J. Mater. Sci. 35, 713 (2000). [CrossRef]
  47. D. Zhou, Y. Shi, P. Yun, and J. J. Xie, “Influence of precipitants on morphology and sinterability of Nd3+:Lu2O3 nanopowders by a wet chemical processing,” J. Alloys Compd. 479, 870 (2009). [CrossRef]
  48. Yu. L. Kopylov, V. B. Kravchenko, A. Komarov, Z. M. Lebedeva, and V. V. Shemet, “Nd:Y2O3 nanopowders for laser ceramics,” Opt. Mater. 29, 1236 (2007). [CrossRef]
  49. S. Ramanathan, S. K. Roy, and Y. J. Bhat, “Transparent YAG from powder prepared by homogeneous precipitation reaction Al(NO3)3+Y(NO3)3+(NH4)2SO4+CO(NH2)2,” J. Mater. Sci. Lett. 20, 2119 (2001). [CrossRef]
  50. G. Xu, X. Zhang, W. He, H. Liu, and H. Li, “The study of surfactant application on synthesis of YAG nanosized powders,” Powder Technol. 163, 202 (2006). [CrossRef]
  51. X. Li, Q. Li, J. Wang, and S. Yang, “Effect of process parameters on the synthesis of YAG nano-crystallites in supercritical solvent,” J. Alloys Compd. 421, 298 (2006). [CrossRef]
  52. A. C. Bravo, L. Longuet, D. Autissier, J. F. Baumard, P. Vissie, and J. L. Longuet, “Influence of the powder preparation on the sintering of Yb-doped transparent ceramics,” Opt. Mater. 31, 734 (2009). [CrossRef]
  53. B. Chung, J. Park, and S. Sim, “Synthesis of yttrium aluminum garnet powder by a citrate gel method,” J. Ceram. Proc. Res. 4, 145 (2003).
  54. D. Chen, E. H. Jordan, and M. Gell, “Sol-gel combustion synthesis of nanocrystalline YAG powder from metal-organic precursors,” J. Am. Ceram. Soc. 91, 2759 (2008). [CrossRef]
  55. X. Ge, Y. Sun, C. Liu, and Wu Qi, “Influence of combustion reagent and microwave drying method characteristics of nano-sized Nd3+:YAG powders synthesized by the gel combustion method,” Gel Sci. Technol. 52, 179 (2009). [CrossRef]
  56. M. P. Pechini, “Method of preparing lead and alkaline-earth titanates and niobates and coating using the same to form a capacitor,” U.S. Patent 3 330 697 (1963).
  57. D. Hreniak, R. Fedyk, A. Bednarkiewicz, W. Strek, and W. Łojkowski, “Luminescence properties of Nd:YAG nanoceramics prepared by low-temperature high-pressure sintering method,” Opt. Mater. 29, 1244 (2007). [CrossRef]
  58. J. Zárate, R. López, and E. A. Aguilar, “Synthesis of yttrium aluminum garnet by modifying the citrate precursor method,” Azo J. Mat. Online 1, 1 (2005).
  59. R. Fedyk, D. Hreniak, W. Łojkowski, W. Strȩk, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, “Method of preparation and structural properties of transparent YAG nanoceramics,” Opt. Mater. 29, 1252 (2007). [CrossRef]
  60. V. V. Ivanov, A. S. Kaigorodov, V. R. Khrustov, V. V. Osipov, A. I. Medvedev, A. M. Murzakaev, and A. N. Orlov, “Properties of the translucent ceramics Nd:Y2O3 prepared by pulsed compaction and sintering of weakly aggregated nanopowders,” Glass Phys. Chem. 33, 387 (2007). [CrossRef]
  61. S. N. Bagayev, V. V. Osipov, M. G. Ivanov, V. I. Solomonov, V. V. Platonov, A. N. Orlov, A. V. Rasuleva, and S. M. Vatnik, “Fabrication and characteristics of neodymium-activated yttrium oxide optical ceramics,” Opt. Mater. 31, 740 (2009). [CrossRef]
  62. H. M. Wang, M. C. Simmonds, Y. Z. Huang, and J. M. Rodenburg, “Synthesis of nanosize powders and thin films of Yb-Doped YAG by sol-gel methods,” Chem. Mater. 15, 3474 (2003). [CrossRef]
  63. S. Mathur, H. Shen, and M. Veith, “Structural and optical properties of highly Nd-doped yttrium aluminum garnet ceramics from alkoxide and glycolate precursors,” J. Am. Ceram. Soc. 89, 2027 (2006). [CrossRef]
  64. Yu. L. Kopylov, V. B. Kravchenko, S. N. Bagayev, V. V. Shemet, A. A. Komarov, O. V. Karban, and A. A. Kaminskii, “Development of Nd3+:Y3Al5O12 laser ceramics by high-pressure colloidal slip-casting (HPCSC) method,” Opt. Mater. 31, 707 (2009). [CrossRef]
  65. L. Esposito and A. Piancastelli, “Role of powder properties and shaping techniques on the formation of pore-free YAG materials,” J. Eur. Ceram. Soc. 29, 317 (2009). [CrossRef]
  66. S. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, and E. C. Dickey, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456 (2009). [CrossRef]
  67. A. Ikesue and K. Kamata, “Microstructure and optical properties of hot isostatically pressed Nd:YAG ceramics,” J. Am. Ceram. Soc. 79, 1927 (1996). [CrossRef]
  68. A. LaRoche, K. Rozenburg, J. Voyles, L. Fehrenbacher, and G. Gilde, “An economic comparison of hot pressing vs. pressureless sintering for transparent spinel armor,” in Advances in Ceramic Armor IV. A Collection of Papers Presented at the 32nd International Conference on Advanced Ceramics and Composites, January 27-February 1, 2008, Daytona Beach, Florida, ed. LisaProkurat Franks, Volume Editors Tatsuki Ohji and Andrew Wereszczak. A John Wiley & Sons, Inc., Publication, 2009, pp. 55-62.
  69. Z. Chen, J. Li, J. Xu, and Z. Hu, “Fabrication of YAG transparent ceramics by two-step sintering,” Cer. Internat. 34, 1709 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited