OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 78, Iss. 5 — May. 1, 2011
  • pp: 317–327

The RUSALKA device for measuring the carbon dioxide and methane concentration in the atmosphere from on board the International Space Station

O. I. Korablev, Yu. K. Kalinnikov, A. Yu. Titov, A. V. Rodin, Yu. V. Smirnov, M. A. Poluarshinov, E. A. Kostrova, A. V. Kalyuzhnyĭ, A. Yu. Trokhimovskiĭ, I. I. Vinogradov, A. A. Fedorova, A. Yu. Ivanov, A. A. Venkstern, V. V. Barke, and O. Z. Rosté  »View Author Affiliations


Journal of Optical Technology, Vol. 78, Issue 5, pp. 317-327 (2011)
http://dx.doi.org/10.1364/JOT.78.000317


View Full Text Article

Acrobat PDF (535 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The high-resolution near-IR RUSALKA spectrometer is intended for developing a technique for measuring the carbon dioxide and methane concentrations in the atmosphere from on board the International Space Station. It consists of two main elements: an echelle spectrometer and an acoustooptic tunable filter used to select the diffraction orders of the grating. The device provides high resolving power (at least 20 000) in the 0.73–1.68 −µ m region, is compact, has low weight, and contains no moving parts. The concentrations of the gases are determined from the unsaturated lines of the CO2 band (1.58 µm) and the CH4 band (1.65 µm). This paper describes the technical characteristics of the device as well as the results of its ground-based calibrations.

© 2011 OSA

History
Original Manuscript: January 27, 2011
Published: June 20, 2011

Citation
O. I. Korablev, Yu. K. Kalinnikov, A. Yu. Titov, A. V. Rodin, Yu. V. Smirnov, M. A. Poluarshinov, E. A. Kostrova, A. V. Kalyuzhnyĭ, A. Yu. Trokhimovskiĭ, I. I. Vinogradov, A. A. Fedorova, A. Yu. Ivanov, A. A. Venkstern, V. V. Barke, and O. Z. Rosté, "The RUSALKA device for measuring the carbon dioxide and methane concentration in the atmosphere from on board the International Space Station," J. Opt. Technol. 78, 317-327 (2011)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-78-5-317


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. N. Aref’ev, F. V. Kashin, and N. E. Kamenogradskiĭ, "Systematic measurements of carbon dioxide concentrations in the atmosphere," Izv. Ross. Akad. Nauk Fiz. Atmosf. Okeana 26, 584 (2005).
  2. P. J. Rayner and D. M. O’Brien, "The utility of remotely sensed CO2 concentration data in surface source inversions," Geophys. Res. Lett. 28, (1), 175 (2001). [CrossRef]
  3. M. Buchwitz, R. de Beek, J. P. Burrows, H. Bovensmann, T. Warneke, J. Notholt, J. F. Meirink, A. P. H. Goede, P. Bergamaschi, S. Körner, M. Heimann, and A. Schulz, "Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models," Atmos. Chem. Phys. 5, 941 (2005). [CrossRef]
  4. R. J. Engelen, A. S. Denning, and K. R. Gurney, "Global observations of the carbon budget. 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras," J. Geophys. Res. 106, 20055 (2001). [CrossRef]
  5. R. J. Engelen, E. Andersson, F. Chevallier, A. Hollingsworth, M. Matricardi, A. P. McNally, J.-N. Thépaut, and P. D. Watts, "Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results," J. Geophys. Res. 109, (D19), (2004). [CrossRef]
  6. A. Chédin, R. Saunders, A. Hollingsworth, N. Scott, M. Matricardi, J. Etcheto, C. Clerbaux, R. Armante, and C. Crevoisier, "The feasibility of monitoring CO2 from high-resolution infrared sounders," J. Geophys. Res. 108, (D2), (2003).
  7. P. J. Rayner, R. M. Law, D. M. O’Brien, T. M. Butler, and A. C. Dilley, "Global observations of the carbon budget 3. Initial assessment of the impact of satellite orbit, scan geometry, and cloud on measuring CO2 from space," J. Geophys. Res. 107, (D21), (2002). [CrossRef]
  8. D. Crisp, R. M. Atlas, F.-M. Breon, L.-R. Brown, J.-P. Burrows, P. Ciais, B.-J. Connor, S.-C. Doney, I.-Y. Fung, D.-J. Jacob, C.-E. Miller, D. O’Brien, S. Pawson, J.-T. Randerson, P. Rayner, R.-J. Salawitch, S.-P. Sander, B. Sen, G.-L. Stephens, P.-P. Tans, G.-C. Toon, P.-O. Wennberg, S.-C. Wofsy, Y.-L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, "The Orbiting Carbon Observatory (OCO) mission," Adv. Space Res. 34, 700 (2004). [CrossRef]
  9. D. Crisp, C. E. Miller, and P. L. DeCola, "NASA Orbiting Carbon Observatory: Measuring the column-averaged carbon dioxide mole fraction from space," J. Appl. Remote Sens. 2, (1), (2008). [CrossRef]
  10. A. Kuze, H. Suto, M. Nakajima, and T. Hamazaki, "Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring," Appl. Opt. 48, 6716 (2009). [CrossRef]
  11. N. Saitoh and R. Imasu, "CO2 profile from thermal infrared spectra of GOSAT/TANSO-FTS: First results," American Geophysical Union, Fall Meeting 2009, Abstract #A51A-0093.
  12. Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, N. Kikuchi, I. Morino, O. Uchino, Sh. Maksyutov, H. Watanabe, and T. Yokota, "Global column abundances of carbon dioxide and methane retrieved from Greenhouse gases Observing SATellite (GOSAT) observation," EGU General Assembly 2010, 2–7 May, 2010, Vienna, Austria.
  13. I. Aben, O. Hasekamp, and W. Hartmann, "Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere," J. Quant. Spectrosc. Radiat. Transf. 104, 450 (2007). [CrossRef]
  14. D. F. Baker, H. Bosch, S. C. Doney, D. O’Brien, and D. S. Schimel, "Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory," Atmos. Chem. Phys. 10, 4145 (2010). [CrossRef]
  15. J.-M. Hartmann, C. Boulet, H. Tran, and M. T. Nguyen, "Molecular dynamics simulations for CO2 absorption spectra. I. Line broadening and the far wing of the ν3 infrared band," J. Chem. Phys. 133, 144313 (2010). [CrossRef]
  16. O. I. Korablev, J.-L. Bertaux, and I. I. Vinogradov, "Compact high-resolution IR spectrometer for atmospheric studies," Proc. SPIE 4818, 272 (2002).
  17. O. I. Korablev, J.-L. Bertaux, I. I. Vinogradov, Yu. K. Kalinnikov, D. Nevejans, and E. Neefs, "Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements," Proc. of the 5th Int. Conf. on Space Optics (ICSO 2004), Vol. SP-554, 2004, ESA Publications.
  18. D. A. Belyaev, I. I. Vinogradov, Yu. K. Kalinnikov, A. V. Kiselev, O. I. Korablev, A. V. Rodin, and A. A. Fedorova, "Small high-resolution echelle spectrometer using acoustooptic filtering for atmospheric studies," Prob. Uprav. Informatiki (1), 153 (2005).
  19. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Yu. Kalinnikov, B. Bach, J. P. Dubois, and E. Villard, "Compact high-resolution space-borne echelle grating spectrometer with AOTF based order sorting for the infrared domain from 2.2 to 4.3 micrometer," Appl. Opt. 45, 5191 (2006). [CrossRef]
  20. J.-L. Bertaux, D. Nevejans, O. Korablev, E. Villard, E. Quemerais, E. Neefs, F. Montmessin, F. Leblanc, J.-P. Dubois, E. Dimarellis, A. Hauchecorne, F. Lefevre, P. Rannou, J.-Y. Chaufray, M. Cabane, G. Cernogora, G. Souchon, F. Semelin, A. Reberac, E. Van Ransbeek, S. Berkenbosch, R. Clairquin, C. Muller, F. Forget, F. Hourdin, O. Talagrand, A. Rodin, A. Fedorova, A. Stepanov, I. Vinogradov, A. Kiselev, Yu. Kalinnikov, G. Durry, B. Sandel, A. Stern, and J.-C. Gerard, "SPICAV/SOIR on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere," Planet. Space Sci. 55, 1653 (2007). [CrossRef]
  21. I. C. Chang, "Tuneable acousto-optic filters: An overview," Opt. Eng. 16, 455 (1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited