OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 79, Iss. 10 — Oct. 1, 2012
  • pp: 653–658

Barrier-discharge excilamps: history, operating principle, prospects∗∗To the radiant memory of Galina Arkad’evna Volkova (1935–2011).

V. F. Tarasenko and E. A. Sosnin  »View Author Affiliations


Journal of Optical Technology, Vol. 79, Issue 10, pp. 653-658 (2012)
http://dx.doi.org/10.1364/JOT.79.000653


View Full Text Article

Acrobat PDF (556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes the operating principle of modern sources of spontaneous UV and VUV radiation based on excimer and exciplex molecules—excilamps. Citations to pioneering papers are given, in which a barrier discharge was used to excite the radiation of excilamps. The design of barrier-discharge excilamps and irradiating modules based on them are considered, along with efficient operating regimes and the emission spectra of the most promising excilamps. Examples are given of the use of barrier-discharge excilamps in science and engineering.

© 2012 OSA

History
Original Manuscript: December 26, 2011
Published: October 31, 2012

Citation
V. F. Tarasenko and E. A. Sosnin, "Barrier-discharge excilamps: history, operating principle, prospects∗∗To the radiant memory of Galina Arkad’evna Volkova (1935–2011).," J. Opt. Technol. 79, 653-658 (2012)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-79-10-653


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Stevens and S. Hutton, “Radiation life-time of the pyren dimer and the possible role of excited dimer in energy transfer processes,” Nature 186, 1045 (1960). [CrossRef] [PubMed]
  2. J. B. Birks, The Exciplex (Academic Press, New York, 1975), pp. 39–74.
  3. A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].
  4. G. A. Volkova, N. N. Kirillova, E. N. Pavlovskaya, I. V. Podmoshenski?, and A. V. Yakovleva, “Lamp for illumination in the vacuum ultraviolet region,” Inventor’s Certificate 972 249, Byull. Izobr. No. 41, 179 (1982).
  5. G. A Volkova, N. N. Kirillova, E. N. Pavlovskaya, and A. V. Yakovleva, “A VUV barrier-discharge lamp in inert gases,” Zh. Prikl. Spektrosk. 41, 681 (1984).
  6. B. Eliasson and U. Kogelschatz, “UV excimer radiation from dielectric-barrier discharges,” Appl. Phys. B 46, 299 (1988). [CrossRef]
  7. H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992). [CrossRef]
  8. I. W. Boyd, J.-Y. Zhang, and U. Kogelschatz, “Development and applications of UV excimer lamps,” in Photo-Excited Processes, Diagnostics and Applications, A. Peled, ed. (Kluwer Academic Pub, 2003), pp. 161–199.
  9. M. V. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Usp. Fiz. Nauk 173, 201 (2003). [Phys. Usp. 46, 193 (2003)]. [CrossRef]
  10. E. A. Sosnin, T. Oppenländer, and V. F. Tarasenko, “Applications of capacitive and barrier discharge excilamps in photoscience,” J. Photochem. Photobiol. C: Rev. 7, 145 (2006). [CrossRef]
  11. E. A. Sosnin, I. V. Sokolova, and V. F. Tarasenko, “Development and applications of novel UV and VUV excimer and exciplex lamps for the experiments in photochemistry,” in Photochemistry Research Progress, A. Sanchez and S. J. Gutierrez, eds. (Nova Science Publishers, 2008), pp. 225–269.
  12. A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).
  13. G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)]. [CrossRef]
  14. O. K. Shuaibov, I. V. Shevera, L. L. Shimon, and E. A. Sosnin, Suchasni dzherela ul’trafioletovogo viprominyuvannya: rozrobka ta zastosuvannya. Uzhgorod–Tomsk (Uzhgorods’ki? natsional’ni? universitet, Toms’ki? derzhavni? universitet, 2006).
  15. E. Arnold, R. Driskemper, and S. Reber, “High-power excimer sources,” in Proceedings of the Eighth International Symposium on Science and Technology of Light Sources (LS-8), Greifswald, Germany, 30 Aug.–3 Sept. 1998, IL12, pp. 90–98.
  16. S. M. Avdeev, E. A. Sosnin, V. S. Skakun, V. F. Tarasenko, and D. V. Shitts, “Two-band emission source based on a three-barrier KrCl-XeBr excilamp,” Pis’ma Zh. Tekh. Fiz. 34, No. 17, 1 (2008). [Tech. Phys. Lett. 34, 725 (2008)].
  17. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, and D. V. Shitts, “Sealed efficient excilamps excited by a capacitive discharge,” Pis’ma Zh. Tekh. Fiz. 25, No. 21, 27 (1999). [Tech. Phys. Lett. 25, 858 (1999)].
  18. Sz. Beleznai, G. Mihajlik, A. Agod, I. Maros, R. Juhasz, Zs. Nemeth, L. Jakab, and P. Richter, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, 3777 (2006). [CrossRef]
  19. A. Schreiber, B. Kuhn, E. Arnold, F.-J. Schilling, and H.-D. Witzke, “Radiation resistance of quartz glass for VUV discharge lamps,” J. Phys. D: Appl. Phys. 38, 3242 (2005). [CrossRef]
  20. F. Vollkommer and L. Hitzschke, “Dielectric barrier discharge,” in Proceedings of the Eighth International Symposium on Science and Technology of Light Sources (LS-8), Germany, Greifswald, 1998, pp. 51–60.
  21. B. M. Smirnov, “Excimeric molecules,” Usp. Fiz. Nauk 139, No. 1, 53 (1983). [Phys. Usp. 26, 31 (1983)]. [CrossRef]
  22. S. M. Avdeev, E. A. Sosnin, and V. F. Tarasenko, “Optical characteristics of plasma of I2*, Cl2*, and Br2* halogen dimer barrier-discharge excilamps,” Opt. Spektrosk. 103, 554 (2007). [Opt. Spectrosc. 103, 526 (2007)].
  23. O. N. Cha?kovskaya, “Spectroluminescence properties, photophysical and photochemical processes in hydroxyaromatic compounds under UV excitation,” Author’s abstract of doctoral dissertation (Tomsk: TGU, 2007).
  24. T. Oppenländer, Photochemical Purification of Water and Air (Wiley, Weinheim, 2003).
  25. G. G. Matafonova, N. Christofi, V. B. Batoev, and E. A. Sosnin, “Degradation of chlorophenols in aqueous media using UV XeBr excilamp in a flow reactor,” Chemosphere 70, 1124 (2008). [CrossRef] [PubMed]
  26. Real-time monitor for polycyclic aromatic hydrocarbons (PAH) ecochem PAS 2000 [Elektronic resource]. URL: http://www.ecochem.biz/PAH/PAS2000.htm.
  27. G. E. Gerasimov, B. E. Krylov, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, “Emission in argon and krypton at 147 nm excited by runaway-electron-induced diffusion discharge,” Kvant. Elektron. (Moscow) 40, 241 (2010). [Quantum Electron. 40, 241 (2010)]. [CrossRef]
  28. S. M. Avdeev, G. N. Zvereva, and E. A. Sosnin, “Investigation of the conditions of efficient I2* (342 nm) luminescence in a barrier discharge in a Kr-I2 mixture,” Opt. Spektrosk. 103, 946 (2007). [Opt. Spectrosc. 103, 910 (2007)].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited