OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 79, Iss. 10 — Oct. 1, 2012
  • pp: 659–666

Areas in which vacuum ultraviolet excilamps are used (Review)

E. A. Sosnin  »View Author Affiliations

Journal of Optical Technology, Vol. 79, Issue 10, pp. 659-666 (2012)

View Full Text Article

Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the results of using vacuum ultraviolet excilamps based on the excited inert-gas dimers Xe2* (172 nm), Kr2* (146 nm), and Ar2* (126 nm) in scientific research and commercial practice—namely, in illumination engineering and analytical instrumentation, for the creation of new optical materials, photochemistry, and the modification of surface properties.

© 2012 OSA

Original Manuscript: March 23, 2012
Published: October 31, 2012

E. A. Sosnin, "Areas in which vacuum ultraviolet excilamps are used (Review)," J. Opt. Technol. 79, 659-666 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].
  2. T. Oppenländer, “Novel incoherent excimer UV irradiation units for the application in photochemistry, photobiology, photomedicine and for waste water treatment,” Eur. Photochem. Assoc. Newsl. 50, 2 (1994).
  3. A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).
  4. B. M. Smirnov, “Excimeric molecules,” Usp. Fiz. Nauk 139, No. 1, 53 (1983). [Phys. Usp. 26, 31 (1983)]. [CrossRef]
  5. G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)]. [CrossRef]
  6. M. McKasker, “Eximers of inert gases,” in Excimer Lasers, C. K. Rhodes, ed. (Springer-Verlag, New York, 1979; Mir, Moscow, 1981), pp. 70–117.
  7. LINEX® Linear Excimer LAMP System (123 D05 E 05/03 Co) http://osram.com/_global/pdf/Professional/Display_Optic/Display_Sys tems/123D005GB_PI_LINEX.pdf.
  8. PLANON®, Product Information Bulletin FO135R3.
  9. A. A. Nemodruk and E. V. Bezrogova, Photochemical Reactions in Inorganic Chemistry (Khimiya, Moscow, 1972).
  10. J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997). [CrossRef]
  11. F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single-photon ionization mass spectrometry with a novel electron-pumped excimer lamp for detection of trace compounds from thermal processes,” Organohalogen Compd. 66, 795 (2004).
  12. M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009). [CrossRef]
  13. E. A. Sosnin, É. A. Zakharova, and V. N. Batalova, “Using excilamps in analytical chemistry (Review),” Zavodskaya Laboratoriya 71, No. 8, 18 (2005).
  14. M. V. Griechetschkina, N. K. Zaitsev, and A. M. Braun, “VUV-photolysis oxidative degradation of organics inhibiting the inverse-voltammetric determination of heavy metals. 1. Humic substances,” Toxicol. Environ. Chem. 53, 143 (1996). [CrossRef]
  15. A. Sheremet, E. Averyaskina, E. Chekmeneva, and S. Ermakov, “Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution,” Electroanalysis 19, 2222 (2007). [CrossRef]
  16. M. Murahara, Y. Ogawa, K. Yoshida, and Y. Okamato, “Photochemical laminating of low refractive index transparent antireflective SiO2 film,” Proc. SPIE 4932, 48 (2003). [CrossRef]
  17. K. Asano and M. Murahara, “Photochemical bonding of fluorocarbon and fused silica glass for ultraviolet ray transmitting,” MRS Proc. 796, V3.7 (2003). [CrossRef]
  18. M. Murahara, N. Sato, T. Funatsu, and Y. Okamoto, “Water-resistant hard coating on optical material by photooxidation of silicone oil,” Proc. SPIE 5991, 599118 (2005). [CrossRef]
  19. G. Baum and T. Oppenländer, “VUV-oxidation of chloroorganic compounds in an excimer flow through photoreactor,” Chemosphere 30, 1781 (1995). [CrossRef]
  20. T. Oppenländer, Photochemical Purification of Water and Air (Wiley, Weinheim, 2003).
  21. M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, 225 (2004). [CrossRef]
  22. T. Oppenländer and M. Fradl, “TOC destruction of a phenol/water azeotrope by ‘Photoreactive distillation’ through an incoherent vacuum-UV excimer lamp,” Chem. Eng. Technol. 22, 951 (1999). [CrossRef]
  23. T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005). [CrossRef] [PubMed]
  24. E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, “Photomineralization of methanol in a Xe2 photoreactor (??172 nm) with aeration of the solution,” Izv. Vyssh. Uchebn. Zaved. Fiz. No. 10, 95 (2006).
  25. E. A. Sosnin and M. V. Erofeev, “Drying of natural gas and photolysis of methanol in flow-through photoreactors based on Xe2 and KrCl excilamps,” in Materials of the Third School Seminar of Young Scientists of Russia (June 8–12, 2004) (Izd. BNTs SO RAN, Ulan-Udé, 2004), pp. 247–248.
  26. A. Yu. Akhmedov, V. I. Erofeev, M. V. Erofeev, V. A. Istomin, S. D. Korovin, Yu. V. Medvedev, Yu. I. Polygalov, V. M. Orlovski?, O. A. Sergeev, E. A. Sosnin, V. P. Stepanov, and V. F. Tarasenko, “Method of drying natural gas, flow-through reactor for drying natural gas,” Russian Patent 2 284 850. Priority 3/9/2006. Reg. No. Pending 2005106634/15 on 3/9/2005, Pub. 10/10/2006, Byul. No. 28.
  27. Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).
  28. T. Oppenländer and G. Baum, “Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren,” Wasser-Abwasser 137, 321 (1996).
  29. K. Waizenegger and T. Oppenlaender, “Verfahren zur Mediumaufbereitung mit einem Excimer-Strahler und Excimer-Strahler zur Durchfuhrung eines solchen Verfahrens,” Offenlegungsschrift DE 195 07 189. Anmeldtag: 02.03.1995. Offenlegunstag: 12.09.1996.
  30. P. S. Pa, “Optical assistance in thin-film microelectro-removal for touch-panel displays,” J. Electroanal. Chem. 651, 38 (2011). [CrossRef]
  31. H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992). [CrossRef]
  32. Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005). [CrossRef]
  33. J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).
  34. J. Y. Zhang and I. W. Boyd, “Rapid photo-oxidation of silicon at room temperature using 126-nm vacuum ultraviolet radiation,” Appl. Surf. Sci. 186, 64 (2002). [CrossRef]
  35. U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410 (1992). [CrossRef]
  36. I. W. Boyd, “Dielectric photoformation of Si and SiGe,” in Advances in Rapid Thermal and Integrated Processes (Kluwer Publ., Dordrecht, 1996), pp. 235–264.
  37. V. Cracium, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low-temperature vacuum-ultraviolet-assisted oxidation,” Appl. Phys. Lett. 75, 1261 (1999). [CrossRef]
  38. S. Periyasamy, Gupta Deepti, and M. L. Gulrajani, “Nanoscale surface roughening of mulberry silk by monochromatic VUV excimer lamp,” J. Appl. Polymer Sci. 103, 4102 (2007). [CrossRef]
  39. H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992). [CrossRef]
  40. F. Kessler, H.-D. Mohring, and G. H. Bauer, “VUV excimer light source for deposition of amorphous semiconductors,” Mater. Res. Soc. Symp. Proc. 192, 559 (1990). [CrossRef]
  41. J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Thin tantalum oxide films prepared by 172-nm excimer lamp irradiation using sol–gel method,” Thin Solid Films 318, 252 (1998). [CrossRef]
  42. N. Kaliwoh, J. Y. Zhang, and I. W. Boyd, “Titanium dioxide films prepared by photoinduced sol–gel processing using 172-nm excimer lamps,” Surf. Coat. Technol. 125, 424 (2000). [CrossRef]
  43. S. L. Miller, “Production of some organic compounds under the possible primitive earth condition,” J. Am. Chem. Soc. 77, 2351 (1955). [CrossRef]
  44. M. Terasaki, S. Nomoto, H. Mita, and A. Shimoyama, “A new pathway to aspartic acid from maleic acid affected by ultraviolet light,” Origins Life Evol. Biosphere 32, 91 (2002). [CrossRef]
  45. E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).
  46. P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).
  47. R. Navarro-Gonzalez, A. Negron-Mendoza, and E. Chacon, “The ?-irradiation of aqueous solutions of urea,” Origins Life Evol. Biosphere 19, 109 (1989). [CrossRef]
  48. E. A. Sosnin, A. Gross, N. Bartnik, T. Oppenländer, and N. Yu. Vasil’eva, “Study of the photodegradation of carbamide in flow-through photoreactors based on UV and VUV excilamps,” in Fundamental Problems of new Technologies in the Third Millenium: Materials of the Third All-Russia Conference of Young Scientists, Tomsk (Izd. Inst. Optiki Atmosf. SO RAN, 2006), pp. 169–172.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited