OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 79, Iss. 11 — Nov. 1, 2012
  • pp: 681–688

Modern video informatics: problems and prospects

V. N. Vasil’ev, I. P. Gurov, and A. S. Potapov  »View Author Affiliations


Journal of Optical Technology, Vol. 79, Issue 11, pp. 681-688 (2012)
http://dx.doi.org/10.1364/JOT.79.000681


View Full Text Article

Acrobat PDF (325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper discusses modern problems of video informatics in the area of the formation, transmission, processing, analysis, and visualization of video information. The distinguishing feature of video informatics is that it treats these problems from a unified theoretical viewpoint, and this allows the characteristics of video-information systems to be developed and optimized as a unified whole. It is shown to be effective to use a theoretical–informational approach to analyze and optimize video-information systems, starting from the optical channel of radiation propagation in free space when images or multi-dimensional video data are being formed and concluding with the visualization system. Promising directions of further development of the methods of video informatics are highlighted.

© 2012 OSA

History
Original Manuscript: July 30, 2012
Published: November 30, 2012

Citation
V. N. Vasil’ev, I. P. Gurov, and A. S. Potapov, "Modern video informatics: problems and prospects," J. Opt. Technol. 79, 681-688 (2012)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-79-11-681


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. N. Vasil’ev, I. P. Gurov, and A. S. Potapov, “Mathematical methods and algorithmic assurance of the analysis and recognition of images in information–telecommunication systems,” Federal portal on scientific and innovation activity. Access regime http://www.sci-innov.ru/articles/itcs/contest_its/?entry_id=62325.
  2. C. Wagner and G. Häusler, “Information theoretical optimization for optical image sensors,” Appl. Opt. 42, 5418 (2003). [CrossRef] [PubMed]
  3. D. D. Klovski?, ed., Theory of Electrical Communication (Radio i Svyaz’, Moscow, 1999).
  4. L. I. Khromov, A. K. Tsitsulin, and A. N. Kulikov, Video Informatics. Transmission and Computer Processing of Video Information (Radio i Svyaz’, Moscow, 1991).
  5. B. Horn and M. Brooks, eds., Shape from Shading (MIT Press, Cambridge, Mass., 1989).
  6. C. Shannon, Collected Papers (IEEE Press, New York, 1993; Inostr. Lit., Moscow, 1963).
  7. A. N. Kolmogorov, Information Theory and the Theory of Algorithms (Nauka, Moscow, 1987).
  8. D. Goodman, Statistical Optics (Wiley, New York, 1985; Mir, Moscow, 1988).
  9. R. Solomonoff, Does Algorithmic Probability Solve the Problem of Induction? (Oxbridge Research, Cambridge, Mass., 1997).
  10. P. M. B. Vitanyi and M. Li, “Minimum description length induction, Bayesianism, and Kolmogorov complexity,” IEEE Trans. Inf. Theory 46, 446 (2000). [CrossRef]
  11. A. S. Potapov, “Choosing representations of images based on minimization of the representation length of their description,” Izv. Vyssh. Uchebn. Zaved. Prib. 51, No. 7, 3 (2008).
  12. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W. H. Freeman, San Francisco, 1982; Radio i Svyaz’, Moscow, 1987).
  13. M. V. Peterson and A. S. Potapov, “Using the principle of minimal representation length of a description for sensorimotor calibration,” Izv. Kabardino-Balkarskogo Nauchnogo Tsentra, RAN 221 (2011).
  14. V. V. Okunev and A. S. Potapov, “Analysis of the fractal representation of images using the criterion of the minimal representation length of a description,” in Transactions of the Scientific Research Center of Photonics and Optoinformatics: A Collection of Articles, I. P. Gurov and S. A. Kozlova, eds. (SPbGU ITMO, St. Petersburg, 2010), Vol. 2, p. 315.
  15. F. Naterrer, The Mathematics of Computerized Tomography (J. Wiley and Sons, 1986; Mir, Moscow, 1990).
  16. S. Webb, D. R. Dance, and S. Evans, “The physics of image visualization in medicine,” in The Physics of Medical Imaging, S. Webb, ed. (Adam Hilger, CRC Press, Bristol and Philadelphia, 1988; Mir, Moscow, 1991).
  17. V. B. Kashkin and A. I. Sukhinin, Remote Probing of the Earth from Space. Digital Image Processing (Logos, Moscow, 2001).
  18. M. A. Popov and S. A. Stankevich, Methods of Optimizing the Number of Spectral Channels in Problems of the Processing and Analysis of the Data of Remote Probing of the Earth, Vol. 1 (IKI RAN, Moscow, 2006), pp. 106–112.
  19. R. N. Karimov and A. A. Bol’shakov, Methods of Processing Multi-Dimensional Data and Time Series (Goryachaya Liniya-Telekom, Moscow, 2007).
  20. M. Chobanu, Multi-Dimensional Multi-Speed Signal-Processing Systems (Tekhnosfera, Moscow, 2009).
  21. J. L. Lowrance, V. J. Mastrocola, G. F. Renda, P. K. Swain, R. Kabra, M. Bhaskaran, J. R. Tower, and P. A. Levine, “Ultrahigh-frame CCD imagers,” Proc. SPIE 5210, 521067 (2004).
  22. Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for X-ray, UV, visible and near infrared,” Proc. SPIE 7021, 702102 (2008). [CrossRef]
  23. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50, No. 34, H87 (2011). [CrossRef] [PubMed]
  24. F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99 (2004). [CrossRef]
  25. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 46, 446 (1908).
  26. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598 (1997). [CrossRef] [PubMed]
  27. B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 333–378, Chap. 12.
  28. U. Schnars and W. Jueptner, Digital Holography. Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin-Heidelberg, 2005).
  29. S. A. Balti?ski?, I. P. Gurov, S. De Nikola, D. Koppola, and P. Ferraro, “Modern methods of digital holography,” in Problems of Coherent and Digital Optics, I. P. Gurov and S. A. Kozlov, eds. (SPb GU ITMO, St. Petersburg, 2004), pp. 91–117.
  30. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636 (2006). [CrossRef]
  31. V. M. Bove, “Display holography’s digital second act,” Proc. IEEE 100, 918 (2012). [CrossRef]
  32. M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100-megapixel computer-generated holographic images from active tiling—a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247 (2003). [CrossRef]
  33. Y. Takaki and M. Yokouchi, “Speckle-free and gray-scale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567 (2011). [CrossRef] [PubMed]
  34. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199 (2006). [CrossRef]
  35. W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of Workshop on Ambient Media Computing, ACM, 2009, pp. 21–28.
  36. P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multilayered display with water drops,” ACM Trans. Graph. 29, 76 (2010). [CrossRef]
  37. Advanced Institute of Science and Technology, access regime http://www.aist.go.jp/aist_e/latest_re-search/2006/20060210/20060210.html.
  38. S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785 (2004). [CrossRef]
  39. A. Redert, M. O. de Beeck, C. Fehn, W. Ijsselsteijn, M. Pollefeys, L. Van Gool, E. Ofek, I. Sexton, and P. Surman, “Advanced three-dimensional television systems technologies,” in Proceedings of First International Symposium on 3D Data Processing, Visualization and Transmission, 2002, pp. 313–319.
  40. R. Otsuka, T. Hoshino, and Y. Horry, “Transpost: 360-viewable three- dimensional display system,” Proc. IEEE 94, 629 (2006). [CrossRef]
  41. K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278 (2011). [CrossRef] [PubMed]
  42. J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502 (2006). [CrossRef]
  43. IO2 Technology, access regime http://www.io2technology.com/media/heliodisplay-brochure.pdf.
  44. M. Subbarao and T. S. Choi, “Accurate recovery of three-dimensional shape from image focus,” IEEE Trans. Pattern Anal. Mach. Intell. 17, 266 (1995). [CrossRef]
  45. R. Minhas, A. A. Mohammed, and Q. M. J. Wu, “Shape from focus using fast discrete curvelet transform,” Patt. Recogn. 44, 839 (2011). [CrossRef]
  46. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133 (2010). [CrossRef]
  47. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe-projection techniques,” Opt. Lasers Eng. 48, 149 (2010). [CrossRef]
  48. J. M. Huntley, T. Ogundana, R. L. Burguete, and C. R. Coggrave, “Large-scale full-field metrology using projected fringes: some challenges and solutions,” Proc. SPIE 6616, 66162 (2007). [CrossRef]
  49. J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, an Introduction (Springer-Verlag, Berlin, 1999).
  50. J. Gruninger, R. L. Sundberg, M. J. Fox, R. Levine, W. F. Mundkowsky, M. S. Salisbury, and A. H. Ratcliff, “Automated optimal channel selection for spectral imaging sensors,” Proc. SPIE 4381, 43811 (2001).
  51. A. V. Fantin, A. Albertazzia, and T. L. Pintoa, “An efficient mesh-oriented algorithm for 3D measurement in multiple-camera fringe projection,” Proc. SPIE 6616, 66161 (2007). [CrossRef]
  52. M. Mackay, R. G. Fenton, and B. Benhabib, “Time-varying-geometry object surveillance using a multi-camera active-vision system,” Int. J. Smart Sens. Intell. Syst. 1, 679 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited