OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 79, Iss. 12 — Dec. 1, 2012
  • pp: 781–788

Numerical modelling of thermal and gas-dynamic processes in a two-stage atomizer for analytical spectrometry

K. Yu. Nagulin, I. V. Tsivil’skiĭ, R. I. Nazmiev, and A. Kh. Gil’mutdinov  »View Author Affiliations

Journal of Optical Technology, Vol. 79, Issue 12, pp. 781-788 (2012)

View Full Text Article

Acrobat PDF (1019 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on a numerical solution of the Navier–Stokes equations and the equations of molecular kinetics, a complete computer model of a two-stage atomizer has been developed for analytical spectrometry, consisting of a graphite crucible evaporator and a helical atomizer. The model correctly takes into account the heating of the atomizer by an electric current, the gas dynamics, and nonsteady-state thermal-exchange processes, as well as the evaporation and condensation of the atoms of the test substance. The developed model has been experimentally tested, and the results of the modelling agree well with the experimental data.

© 2012 OSA

Original Manuscript: July 24, 2012
Published: December 31, 2012

K. Yu. Nagulin, I. V. Tsivil’skiĭ, R. I. Nazmiev, and A. Kh. Gil’mutdinov, "Numerical modelling of thermal and gas-dynamic processes in a two-stage atomizer for analytical spectrometry," J. Opt. Technol. 79, 781-788 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. V. L’vov, Atomic Absorption Spectral Analysis (Nauka, Moscow, 1966).
  2. I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999). [CrossRef]
  3. V. N. Oreshkin, G. I. Tsizin, and G. L. Vnukovskaya, “Sorption-atomic-absorption determination of tracks of metals (Ag, Bi, In, Cd, Pb and Tl) in natural waters, using a two-chamber powder atomizer,” Zh. Analit. Khimii 49, 755 (1994).
  4. J. A. Holcombe and M. T. Sheehan, “Graphite furnace modification for second-surface atomization,” Appl. Spectrosc. 36, 631 (1982). [CrossRef]
  5. Yu. A. Zakharov and O. B. Kokorina, “Method of spectral analysis,” Russian Patent No. 2 274 848 (2004).
  6. A. Kh. Gilmutdinov, “Electrothermal atomization means for analytical spectrometry,” U. S. Patent No. 5 981 912 (1999).
  7. K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, “Two-stage atomizer for electrothermal atomic-absorption spectroscopy. Dynamics of spatial temperature distribution,” Zh. Analit. Khimii 58, 439 (2003).
  8. A. Kh. Gil’mutdinov and K. Yu. Nagulin, “Method of elementary analysis of a substance and a device for implementing it,” Russian Patent No. 2 370 755 (2007).
  9. Sh. F. Araslanov, A. Kh. Gilmutdinov, and M. Sperling, “3D numerical simulation of gas flows in transversely heated graphite tube atomizers,” in CD—Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, ECCOMAS, 2000, p. 20.
  10. A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.
  11. A. A. Samarskiĭ and Yu. P. Popov, Difference Methods of Solving Problems of Gas Dynamics (Nauka, Moscow, 1980).
  12. C. A. J. Fletcher, Computational Techniques in Fluid Dynamics, Vol. 1 (Springer-Verlag, Berlin, 1990; Mir, Moscow, 1991).
  13. A. Kh. Gil’mutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Atomic-absorption spectrometry with spatial resolution,” Usp. Khim. 75, 339 (2006).
  14. Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002). [CrossRef]
  15. K. Yu. Nagulin and A. Kh. Gil’mutdinov, “Recording system with spatial resolution for atomic-absorption spectrophotometers,” Opt. Zh. 66, No. 7, 99 (1999). [J. Opt. Technol. 66, 662 (1999)].
  16. A. Kh. Gilmutdinov, K. Yu. Nagulin, and M. Sperling, “Spatially resolved atomic absorption analysis,” J. Analyt. At. Spectrom. 15, 1375 (2000). [CrossRef]
  17. X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001). [CrossRef]
  18. G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited