OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 79, Iss. 12 — Dec. 1, 2012
  • pp: 794–798

Theoretical investigation and analysis of time response in heterostructure Geiger-APD

Mehdi Dehghan  »View Author Affiliations

Journal of Optical Technology, Vol. 79, Issue 12, pp. 794-798 (2012)

View Full Text Article

Acrobat PDF (500 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper the mean current impulse response and standard deviation in Geiger mode for heterostructure APD are determined. The model is based on recurrence equations. These equations are solved numerically to calculate the mean current impulse response and standard deviation as a function of time. In this structure we illustrate the multiplication region with different ionization threshold energies that the impact ionization of the injected carrier type is localized and the feedback carrier type is suppressed. In fact for this structure, better control of spatial distribution of impact ionization for both injected and feedback carriers can be achieved. By enhancing the control of impact-ionization position, the structure achieved to high gain and very low noise.

© 2012 OSA

Original Manuscript: February 28, 2012
Published: December 31, 2012

Mehdi Dehghan, "Theoretical investigation and analysis of time response in heterostructure Geiger-APD," J. Opt. Technol. 79, 794-798 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. H. Tan, J. P. R. David, S. A. Plimmer, G. J. Rees, R. C. Tozer, and R. Grey, “Low multiplication noise thin Al0.6Ga0.4As avalanche photodiodes,” IEEE Trans. Electron. Devices 48, 1310 (2001).
  2. C. Groves, C. K. Chia, R. C. Tozer, J. P. R. David, and G. J. Rees, “Avalanche noise characteristics of single AlxGa1-xAs(0.3<x<0.6)–GaAs heterojunction APDs,” IEEE J. Quantum Electron. 41, 70 (2005).
  3. R. Chin, N. Holonyak, G. E. Stillman, J. Y. Tang, and K. Hess, “Impact ionisation in multilayered heterojunction structures,” Electron. Lett. 16, 467 (1980).
  4. C. K. Chia, B. K. Ng, J. P. R. David, G. J. Rees, R. C. Tozer, M. Hopkinson, R. J. Airey, and P. N. Robson, “Multiplication and excess noise in AlGaAs/GaAs multilayer avalanche photodiodes,” J. Appl. Phys. 94, 2631 (2003).
  5. O. Kown, “Optimal excess noise reduction in thin heterojunction Al0.6Ga0.4As–GaAs avalanche photodiodes,” IEEE J. Quantum Electron. 39, 1287 (2003).
  6. C. Groves, C. H. Tan, J. P. R. David, G. J. Ress, and M. M. Hayat, “Exponential time response in analogue and Geiger mode avalanche photodiodes,” IEEE Trans. Electron. Devices 52, 1527 (2005).
  7. J. L. Moll and N. Meyer, “Secondary multiplication in silicon,” Solid State Electron. 3, 155 (1961).
  8. M. A. Saleh, M. M. Hayat, B. E. A. Saleh, and M. C. Teich, “Dead-space-based theory correctly predicts excess noise factor for thin GaAs and AlGaAs avalanche photodiodes,” IEEE Trans. Electron. Devices 47, 625 (2000).
  9. S. A. Plimmer, J. P. R. David, R. Grey, and G. J. Rees, “Avalanche multiplication in AlxGa1-xAs (x=0 to 0.60),” IEEE Trans. Electron. Devices 47, 1089 (2000).
  10. C. H. Tan, P. J. Hambleton, J. P. R. David, R. C. Tozer, and G. J. Rees, “Calculation of APD impulse response using a space- and time-dependent ionization probability distribution function,” J. Lightwave Technol. 21, 155 (2003).
  11. M. M. Hayat and B. E. A. Saleh, “Statistical properties of the impulse response function of double-carrier multiplication avalanche photodiodes including the effect of dead space,” J. Lightwave Technol. 10, 1415 (1992).
  12. W. Chen and Sh. Liu, “PIN avalanche photodiodes model for circuit simulation,” IEEE J. Quantum Electron. 32, 2105 (1996).
  13. S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region,” IEEE Photon. Technol. Lett. 13, 1346 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited