OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 79, Iss. 4 — Apr. 1, 2012
  • pp: 220–225

Diagnostic complex for the modelling and experimental investigation of the spectral and gas-dynamic characteristics of an inductively coupled plasma

K. Yu. Nagulin, R. I. Ibragimov, I. V. Zivilskii, and A. Kh. Gilmutdinov  »View Author Affiliations


Journal of Optical Technology, Vol. 79, Issue 4, pp. 220-225 (2012)
http://dx.doi.org/10.1364/JOT.79.000220


View Full Text Article

Acrobat PDF (1294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A diagnostic complex has been developed for the modelling and experimental investigation of the gas-dynamic and spectral characteristics of an inductively coupled plasma. This complex includes a four-dimensional computer model of plasma, a research plasma generator, a schlieren system for visualizing the spatial structure of gas flows in the torch, and a high-resolution spectrometer for obtaining information on the temperature in the discharge zone from the intensity of the emission spectra. The model adequately maps the gas-flow dynamics in the torch with no discharge ignited in the inductively coupled plasma. The results of the calculations agree well with the experimental data.

© 2012 OSA

History
Original Manuscript: May 25, 2011
Published: April 30, 2012

Citation
K. Yu. Nagulin, R. I. Ibragimov, I. V. Zivilskii, and A. Kh. Gilmutdinov, "Diagnostic complex for the modelling and experimental investigation of the spectral and gas-dynamic characteristics of an inductively coupled plasma," J. Opt. Technol. 79, 220-225 (2012)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-79-4-220


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. I. Boulos, “The inductively coupled radio frequency plasma,” Pure Appl. Chem. 57, 1321 (1985). [CrossRef]
  2. P. Yang and R. M. Barnes, “Plasma modeling and computer simulation of spectrochemical ICP discharges,” Spectrochim. Acta Rev. 13, 275 (1990).
  3. J. Mostaghimi and M. I. Bulous, “Mathematical modeling of the ICPs,” in Inductively Coupled Plasmas in Analytical Atomic Spectrometry (John Wiley & Sons, New York, 1998), pp. 949–983.
  4. J. W. McKelliget and N. El-Kaddah, “The effect of coil design on materials synthesis in an inductively coupled torch,” J. Appl. Phys. 64, 2948 (1998). [CrossRef]
  5. D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At. Spectrom. 11, 623 (1996). [CrossRef]
  6. R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988). [CrossRef]
  7. R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991). [CrossRef]
  8. L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000). [CrossRef]
  9. D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur. Phys. J. D14, 337 (2001).
  10. G. Dunn and T. W. Eagar, “Metal vapors in gas tungsten arcs: Part II. Theoretical calculations of transport properties,” Metall. Trans. A 17, 1865 (1986). [CrossRef]
  11. A. Montaser and D. W. Golightly, eds., Inductively Coupled Plasmas in Analytical Atomic Spectrometry (VCH Publishers, Chichester, 1992), p. 195.
  12. V. S. Klubnikin, “Thermal and gas-dynamic characteristics of an induction discharge in an argon flux,” Teplofiz. Vys. Temp. 13, 473 (1975).
  13. I. Dundr and Ya. Kuchera, “Hydrodynamic structure of a turbulent plasma jet,” in Properties of a Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Sib. Sect. Nauka, Novosibirsk, 1977), pp. 244–257.
  14. Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Studying Flows (Sib. Univ. Izd, Novosibirsk, 2003).
  15. L. A. Vasil’ev, Schlieren Methods (Nauka, Moscow, 1968).
  16. G. I. Mishin, Optical Methods of Studies in a Ballistic Experiment (Nauka, Leningrad, 1979), p. 11.
  17. A. F. Belozerov, Optical Methods of Visualizing Gas Flows (Izd. Kazan. Gos. Tekhn. Univ., Kazan, 2007), p. 615.
  18. A. P. Burmakov and A. G. Shashkov, “Interference–holographic study of nonsteady-state and turbulence of a plasma jet,” in Properties of Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Nauka, Novosibirsk, 1977), pp. 216–229.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited