OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 79, Iss. 6 — Jun. 1, 2012
  • pp: 329–336

Study of neodymium-containing crystalline active elements with discrete and gradient variation of the dopant concentration in the pumping direction

S. V. Gagarskiĭ, V. I. Yurevich, V. V. Nazarov, and A. N. Sergeev  »View Author Affiliations

Journal of Optical Technology, Vol. 79, Issue 6, pp. 329-336 (2012)

View Full Text Article

Acrobat PDF (532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper discusses the operation of active elements with various types of supplementary end heat sinks in a laser based on neodymium-containing crystals with end diode pumping. A comparison is made of heat sinks coupled with the active element and fabricated from an undoped crystal with the same matrix as the active element, as well as crystals with gradient variation of the dopant concentration from zero to a maximum. The types of laser devices in which such elements are suitable are determined.

© 2012 OSA

Original Manuscript: January 10, 2012
Published: June 29, 2012

S. V. Gagarskiĭ, V. I. Yurevich, V. V. Nazarov, and A. N. Sergeev, "Study of neodymium-containing crystalline active elements with discrete and gradient variation of the dopant concentration in the pumping direction," J. Opt. Technol. 79, 329-336 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1999).
  2. R. Ifflaender, Solid-State Lasers for Materials Processing: Fundamental Relations (Springer-Verlag, Berlin, 1998).
  3. J. Kalisky, The Physics and Engineering of Solid-State Lasers (SPIE Press, Bellingham, Washington, 2009).
  4. D. G. Matthews and L. R. Marshall, “Pump face cooling,” in Advanced Solid-State Lasers, Jan. 2001, Conference Paper 75/MB19-2.
  5. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High-power fundamental-mode Nd:YAG laser with efficient birefringence compensation,” Opt. Express 12, 3581 (2004). [CrossRef]
  6. D. Kracht, M. Frede, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high-power diode end-pumping,” Opt. Express 13, 6212 (2005). [CrossRef]
  7. Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express 18, 9518 (2010). [CrossRef]
  8. J. K. Jabczynśki, K. Kopczynśki, and A. Szczesńiak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35, 3572 (1996). [CrossRef]
  9. C. H. Chen, M. D. Wei, and W. F. Hsieh, “Beam-propagation-dominant instability in an axially pumped solid-state laser near degenerate resonator configurations,” J. Opt. Soc. Am. B 18, 1076 (2001). [CrossRef]
  10. N. P. Belashenko, S. V. Gagarskiĭ, M. Z. Smirnov, P. N. Fimin, and V. Yu. Khramov, “Diffraction model of a quasi-continuous laser with diode pumping and active Q switching,” Nauchno-Tekhnich. Vestnik SPbGU ITMO No. 16, 101 (2004).
  11. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated-emission cross-section in Nd3+:Y V O4 crystal,” J. Opt. Soc. Am. B 26, 2084 (2009). [CrossRef]
  12. V. A. Alekseeva, S. V. Gagarskiĭ, U. Kang, K. K. Li, A. V. Lukin, M. Yu. Sibirev, and S. I. Khankov, “Temperature dependence of the energy parameters of a KGW:Nd3+ laser that lases at 1.06 and 1.35 µm,” Opt. Zh. 70, No. 2, 33 (2003). [J. Opt. Technol. 70, 95 (2003)].
  13. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tated, “Heat generation In Nd:YVO with and without laser action,” IEEE Photonics Technol. Lett. 10, 1727 (1998). [CrossRef]
  14. V. V. Togatov, S. V. Gagarskiĭ, P. A. Gnatyuk, and Yu. I. Cherevko, “Pulsed supply unit of laser diode modules for pumping solid-state lasers,” Prib. Tekh. Éksp. No. 2, 158 (2007).
  15. D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor—an international standardization approach,” Opt. Quantum Electron. 24, 993 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited