OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 79, Iss. 8 — Aug. 31, 2012
  • pp: 484–493

Ultraviolet excimer radiation from nonequilibrium gas discharges and its application in photophysics, photochemistry and photobiology

U. Kogelschatz  »View Author Affiliations


Journal of Optical Technology, Vol. 79, Issue 8, pp. 484-493 (2012)
http://dx.doi.org/10.1364/JOT.79.000484


View Full Text Article

Acrobat PDF (263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Narrowband UV and VUV excimer radiation can be generated in a variety of nonequilibrium gas discharges: dielectric barrier discharges, microhollow cathode discharges, arrays of microplasmas, corona discharges. Excimer lamps (excilamps) are now available for a large number of wavelengths and in various geometrical shapes. The availability of nearly monochromatic photon fluxes ranging in energy up to 15 eV resulted in a number of innovative photo-induced processes in photophysics, photochemistry and photobiology. This report focuses on progress made in the last decade.

© 2012 OSA

History
Original Manuscript: May 2, 2012
Published: August 31, 2012

Citation
U. Kogelschatz, "Ultraviolet excimer radiation from nonequilibrium gas discharges and its application in photophysics, photochemistry and photobiology," J. Opt. Technol. 79, 484-493 (2012)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-79-8-484


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410–423 (1992).
  2. I. W. Boyd, J.-Y. Zhang, and U. Kogelschatz, “Development and applications of excimer UV lamps,” in Photo-Excited Processes, Diagnostics and Applications (PEPDA), A. Peled, ed. (Kluwer Academic Publishers, Dordrecht, 2003), pp. 161–199.
  3. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).
  4. U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics and industrial applications,” Plasma Chem. Plasma Process. 23, No. 1, 1–46 (2003).
  5. U. Kogelschatz, “Excimer lamps: history, discharge physics, and industrial applications,” Proc. SPIE. 5483, 272–286 (2004).
  6. M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).
  7. T. Oppenländer, “Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment,” J. Environ. Eng. Sci. 6, No. 3, 253–264 (2007).
  8. A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, The Ultraviolet Excilamps: Physics, Technology and Applications (Tomsk: STT Publishing, 2011), p. 510 (in Russian), ISBN: 978-5-93629-433-4.
  9. S. Peng, J. D. Ametepe, and D. M. Manos, “Analysis and kinetic model of a high-pressure KrI excimer emission in a novel capacitively coupled rf lamp,” Appl. Phys. B. 83, No. 4, 643–650 (2006).
  10. S. Beleznai, P. Richter, and L. Balázs, “New modulated pulsed driving signal for efficient excitation of DBD discharges,” Hakone XI 2, 302–306 (2008). Proc.
  11. J. D. Ametepe, J. Diggs, D. M. Manos, and M. J. Kelley, “Characterization and modeling of a microwave driven xenon excimer lamp,” J. Appl. Phys. 85, No. 11, 7505–7510 (1999).
  12. M. Kitamura, K. Mitsuka, and M. A. Sato, “Practical high-power excimer lamp excited by a microwave discharge,” Appl. Surf. Sci. 79–80, 507–513 (2004).
  13. E. A. Sosnin, A. A. Pikulev, and V. F. Tarasenko, “Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation,” Tech. Phys. 56, No. 4, 526–530 (2011).
  14. J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B 20, No. 6, 2574–2577 (2002).
  15. A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).
  16. E. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitz, “Capacitive discharge excilamps,” Instrum. Exp. Tech. 45, No. 6, 838–839 (2002).
  17. M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).
  18. A. El-Habachi and K. H. Schoenbach, “Generation of intense excimer radiation from high-pressure hollow cathode discharges,” Appl. Phys. Lett. 73, No. 7, 885–887 (1988).
  19. A. El-Habachi and K. H. Schoenbach, “Emission of excimer radiation from direct current, high pressure hollow cathode discharges,” Appl. Phys. Lett. 72, No. 1, 22–24 (1988).
  20. P. Kurunczi, J. Lopez, H. Shah, and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass Spectrom. 205, No. 1–3, 277–283 (2005).
  21. M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, “(Xenon) Excimer emission from pulsed microhollow cathode discharges,” Appl. Phys. Lett. 79, No. 9, 1240–1242 (2001).
  22. J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, “Predicted properties of microhollow cathode discharges in xenon,” Appl. Phys. Lett. 86, No. 7, 071501 (2005).
  23. R. M. Sankaran, K. P. Giapis, M. Moselhy, and K. H. Schoenbach, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett. 83, No. 23, 4728–4730 (2003).
  24. W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).
  25. K. H. Becker, K. Schoenbach, and J. G. Eden, “Microplasmas and applications,” J. Phys. D: Appl. Phys. 39, No. 3, R55–R70 (2006).
  26. K. H. Schoenbach and W. Zhu, “High-pressure microdischarges-sources of ultraviolet radiation,” IEEE J. Quantum Electron. (2012). in print.
  27. J. G. Eden and S.-J. Park, “Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications,” Plasma Phys. Controlled Fusion 47, No. 12B, B83–B92 (2005).
  28. S.-J. Park, K.-F. Chen, N. P. Ostrom, and J. G. Eden, “40?000 pixel arrays of ac-excited silicon microcavity plasma devices,” Appl. Phys. Lett. 86, No. 11, 111501 (2005).
  29. M. Salvermoser and D. E. Murnick, “Efficient, stable, corona discharge 172 nm xenon excimer light source,” J. Appl. Phys. 94, No. 6, 3722–3731 (2003).
  30. M. Salvermoser and D. E. Murnick, “High-efficiency, high-power, stable 172 nm xenon excimer light source,” Appl. Phys. Lett. 83, No. 10, 1932–1934 (2003).
  31. J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).
  32. J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).
  33. A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).
  34. A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).
  35. A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).
  36. A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).
  37. http://www.coherent.com/Downloads/SD_EL2-03_tui-bavpho_k1_2.pdf.
  38. S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).
  39. J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, “1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas,” Appl. Phys. Lett. 79, No. 23, 3752–3754 (2001).
  40. R. J. Carman, R. P. Mildren, B. K. Ward, and D. M. Kane, “High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation,” J. Phys. D: Appl. Phys. 37, No. 17, 2399–2407 (2004).
  41. V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).
  42. E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).
  43. R. J. Carman, B. K. Ward, and D. M. Kane, “Enhanced performance of an EUV light source (?=84nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon,” J. Phys. D: Appl. Phys. 43, No. 2, 025205 (2010).
  44. M. V. Erofeev and V. F. Tarasenko, “XeCl-, KrCl-, XeBr- and KrBr-excilamps of the barrier discharge with the nanosecond pulse duration of radiation,” J. Phys. D: Appl. Phys. 39, No. 16, 3609–3614 (2006).
  45. S. M. Avdeev, I. D. Kostyrya, E. A. Sosnin, and V. F. Tarasenko, “Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp,” Tech. Phys. 51, No. 7, 878–881 (2006).
  46. R. Bussiahn, A. V. Pipa, and E. Kindel, “A miniaturized XeCl dielectric barrier discharge as a source of short lived, fast decaying UV radiation,” Contrib. Plasma Phys. 50, No. 2, 182–192 (2010).
  47. V. Pipa and R. Bussiahn, “Optimization of a dielectric barrier discharge for pulsed UV emission of XeCl at 308 nm,” Contrib. Plasma Phys. 51, No. 9, 850–862 (2011).
  48. H. Esrom and U. Kogelschatz, “Metal deposition with a windowless VUV excimer source,” Appl. Surf. Sci. 54, 440–444 (1992).
  49. M. Lenk and R. Mehnert, “Design and characteristics of a windowless argon excimer source,” in Proc. RadTech, Europe, Basle, 2001, pp. 153–158.
  50. C. Elsner, M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Appl. Surf. Sci. 252, No. 10, 3616–3624 (2006).
  51. M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).
  52. A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).
  53. R. J. Carman and R. P. Mildren, “Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (??172nm),” J. Phys. D: Appl. Phys. 36, No. 1, 19–33 (2003).
  54. E. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, “Simulation of pulsed dielectric barrier discharge xenon excimer lamp,” J. Phys. D: Appl. Phys. 37, No. 21, 2987–2995 (2004).
  55. E. E. Bogdanov, A. A. Kudryavtsev, and R. R. Arslanbekov, “2D simulations of short-pulsed dielectric barrier discharge Xenon excimer lamp,” Contrib. Plasma Phys. 46, No. 10, 807–816 (2006).
  56. D. Lo, C. Shangguan, I. V. Kochetov, and A. P. Napartovich, “Experimental and numerical studies on Xe2? VUV emission in fast electric discharge afterglow,” J. Phys. D: Appl. Phys. 38, No. 18, 3430–3437 (2005).
  57. S. V. Avtaeva and E. B. Kulumbaev, “Effect of the scheme of plasmachemical processes on the calculated characteristics of a barrier discharge in Xenon,” Plasma Phys. Rep. 34, No. 6, 452–470 (2008).
  58. S. V. Avtaeva and A. V. Skornyakov, “Effect of nonlocal electron kinetics on the characteristics of a dielectric barrier discharge in xenon,” Plasma Phys. Rep. 35, No. 7, 593–602 (2009).
  59. S. V. Avtaeva and A. V. Skornyakov, “Calculation of the characteristics of xenon excilamps using a one-dimensional hydrodynamic model,” Russ. Phys. J. 53, No. 3, 257–262 (2010).
  60. S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).
  61. S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).
  62. A. Belasri, K. Khodja, S. Bendella, and Z. Harrache, “One-dimensional modelling of DBDs in Ne-Xe mixtures for excimer lamps,” J. Phys. D: Appl. Phys. 43, No. 44, 445202 (2010).
  63. A. Belasri and Z. Harrache, “Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps,” Phys. Plasmas 17, No. 12, 123501 (2010).
  64. S. Bendella and A. Belasri, “Xe-Ne-HCl excimer lamp excited by a phototriggered discharge,” Plasma Devices Oper. 15, No. 2, 77–85 (2007).
  65. A. Belasri, S. Bendella, and T. Baba-Hamed, “Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp,” Phys. Plasmas 15, No. 5, 053502 (2008).
  66. A. Belasri and Z. Harrache, “Electrical approach of homogenous high pressure Ne/Xe/HCl dielectric barrier discharge for XeCl (308 nm) lamp,” Plasma Chem. Plasma Process. 31, No. 5, 787–798 (2010).
  67. S. V. Avtaeva, B. Saghi, and B. Rahmani, “One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.O1 Cl2 mixture,” IEEE Trans. Plasma Sci. 39, No. 9, 1814–1822 (2011).
  68. M. Guivan and A. Guivan, “Characterization of a white-colour DBD-driven Cadmium Bromide exciplex lamp,” Plasma Sources Sci. Technol. 19, No. 5, 055014 (2010).
  69. M. M. Guivan, A. A. Malinina, and A. Brablec, “Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures,” J. Phys. D: Appl. Phys. 44, No. 22, 224012 (2011).
  70. P. Kurunczi, H. Shah, and K. Becker, “Hydrogen Lyman-? and Lyman-? emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures,” J. Phys. B: At. Mol. Opt. Phys. 32, No. 22, L651–L658 (1999).
  71. T. McCarthy, D. E. Murnick, M. Salvermoser, and A. Ulrich, “Non-thermal Doppler-broadened Lyman-? line shape in resonant dissociation of H2,” J. Phys. B: At. Mol. Opt. Phys. 38, No. 16, 3043–3054 (2005).
  72. A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005). [PubMed]
  73. A. V. Karelin and S. I. Yakovlenko, “Electron-beam pumping conversion into spontaneous emission at the Lyman-Alpha line (?=121.6nm) in Ne/H2 and He/H2 mixtures,” Laser Phys. 13, No. 12, 1455–1460 (2003).
  74. A. V. Karelin, “Far-UV sources pumped by an open discharge and electron beam,” Laser Phys. 14, No. 1, 15–22 (2004).
  75. J. Yan and M. C. Gupta, “High power 121.6 nm radiation source,” J. Vac. Sci. Technol. B 21, No. 6, 2839–2842 (2003).
  76. V. Liberman, M. Rothshield, P. G. Murphy, and S. T. Palmacci, “Prospects for photolithography at 121 nm,” J. Vac. Sci. Technol. B 20, No. 6, 2567–2573 (2002).
  77. J. Yan, “High power 121.6 nm radiation source for advanced lithography,” in Ph.D. Thesis, Norfolk, Va (Old Dominium University, 2005), 146 pages, AAT 3191393.
  78. M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett. 78, No. 7, 880–882 (2001).
  79. G. A. Volkova and G. N. Gerasimov, “Amplification of ?=147nm radiation from a barrier discharge in a mixture of krypton with xenon,” Quantum Electron. 27, No. 3, 213–216 (1997).
  80. G. N. Gerasimov, “Optical spectra of binary rare-gas mixtures,” Phys. Usp. 47, No. 2, 149–168 (2004).
  81. G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon,” Opt. Specrosc. 100, No. 6, 825–829 (2006).
  82. B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).
  83. A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).
  84. http://www.uvsns.com.
  85. H. J. Kuhn, S. E. Braslavsky, and R. Schmidt, “Chemical actinometry,” Pure Appl. Chem. 76, No. 12, 2105–2146 (2004).
  86. M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, No. 3, 225–246 (2004).
  87. M. J. Salvermoser, U. Kogelschatz, and D. E. Murnick, “Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22812 (2009).
  88. Z. Falkenstein, “Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments,” Proc. SPIE 4440, 246–255 (2001).
  89. D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).
  90. D. M. Kane, D. Hirschausen, B. K. Ward, R. P. Mildren, and R. J. Carman, “Surface cleaning of optical materials using novel VUV sources,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific Publishing Co., Singapore, 2006), pp. 243–256. Chapter 13.
  91. T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).
  92. T. Oppenländer, “Excilamp photochemistry,” in CRC Handbook of Organic Photochemistry and Photobiology, 3rd. V. 1. 7th ed., A. G. Griesbeck, M. Oelgemöller, and F. Ghetti, eds. (CRC Press, Boca Raton, 2012).
  93. I. I. Liaw and I. W. Boyd, “The development and application of UV excimer lamps in nanofabrication,” in Functionalized Nanoscale Materials, Devices and Systems, A. Vaseashta and I. N. Mihailescu, eds. (Springer, 2008), pp. 61–76.
  94. R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).
  95. R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).
  96. F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).
  97. L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).
  98. L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).
  99. J. J. Yu and I. W. Boyd, “Low temperature Si and SiGe oxidation through dielectric barrier discharges,” Thin Solid Films 453–454, 63–66 (2004).
  100. J. J. Yu and I. W. Boyd, “Direct nitridation of high-k metal oxide thin films using argon excimer sources,” Electron. Lett. 41, No. 22, 1210–1211 (2005).
  101. T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003). [PubMed]
  102. M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).
  103. C. Elsner, S. Naumov, J. Zajadacz, and M. R. Buchmeiser, “172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films,” Thin Solid Films 517, No. 24, 6772–6776 (2009).
  104. T. Oppenländer, Photochemical Purification of Water and Air, Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts (Wiley-VCH, Weinheim (Germany), 2003).
  105. E. A. Sosnin, I. V. Sokolova, and V. F. Tarasenko, “Development and applications of novel UV and VUV excilamps in photochemistry,” in Photochemistry Research Progress, A. Sanchez and S. J. Gutierrez, eds. (Nova Science Publishers, Inc., Hauppauge, USA, 2008), pp. 225–269.
  106. A. Maisels, F. Jordan, and H. Fissan, “On the effect of charge recombination on the aerosol charge distribution in photocharging systems,” J. Aerosol Sci. 34, No. 1, 117–132 (2003).
  107. J. Jiang, C. J. Hogan Jr., D.-R. Chen, and R. Biswas, “Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms,” J. Appl. Phys. 102, No. 3, 034904 (2007).
  108. P. Intra and N. Tippayawong, “An overview of unipolar charger developments for nanoparticle charging,” Aerosol Air Qual. Res. 11, 187–209 (2011).
  109. http://www.ecochem.biz/PAH/PAS2000.htm.
  110. J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009). [PubMed]
  111. B. Zhang, Y.-C. Liao, S. L. Girshick, and J. T. Roberts, “Growth of coatings on nanoparticles by photoinduced chemical vapor deposition,” J. Nanopart. Res. 10, No. 1, 173–178 (2008).
  112. A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009). [PubMed]
  113. F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis,” Anal. Chem. A 74, No. 15, 3790–3801 (2002).
  114. F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005). [PubMed]
  115. M. S. Eschner and R. Zimmermann, “Determination of photoionization cross-sections of different organic molecules using gas chromatography coupled to single-photon ionization (SPI) time-of-flight mass spectrometry (TOF-MS) with an electron-beam-pumped rare gas excimer light source (EBEL): influence of molecular structure and analytical implications,” Appl. Spectrosc. 65, No. 7, 806–816 (2011). [PubMed]
  116. F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007). [PubMed]
  117. P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).
  118. K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).
  119. V. S. Dmitruck, E. A. Sosnin, and I. A. Obgol’tz, “The first attempt of XeCl-excilamp application in complex psoriasis curing,” Proc. SPIE 6263, 316–321 (2006).
  120. L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008). [PubMed]
  121. A. Pacifico and G. Leone, “Photo(chemo)therapy for vitiligo,” Photodermatol. Photoimmunol. Photomed. 27, No. 5, 261–277 (2011).
  122. V. F. Tarasenko, E. A. Sosnin, O. S. Zhdanova, and E. P. Krasnozhenov, “Applications of excilamps in microbiological and medical investigations,” in Plasma for Bio-Decontamination, Medicine and Food Security, Z. Machala, K. Hensel, and Yu. Akishev, eds. (Springer, 2012), pp. 251–263.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited