OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 79, Iss. 9 — Sep. 1, 2012
  • pp: 557–560

Gain flattening of DWDM channels for the entire C & L bands

S. M. Bilal, M. Zafrullah, and M. K. Islam  »View Author Affiliations

Journal of Optical Technology, Vol. 79, Issue 9, pp. 557-560 (2012)

View Full Text Article

Acrobat PDF (824 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid amplifier consisting of one stage of Erbium Doped Fiber Amplifier and two stages of Raman amplifiers is constructed. Two Raman fibers are cascaded in series to suppress the intensity noise due to double Rayleigh scattering. Backward pumping is applied at all stages in order to increase the gain of Erbium Doped Fiber Amplifier and to decrease the polarization dependent gain of Raman fiber amplifier. In our previous experiment a 16 channel Wavelength Division Multiplexed system with channel spacing of 5 nm was considered. In this experiment a Density Wavelength Division Multiplexed system having 80 channels and a channel spacing of 0.8 nm was taken in to account. Gain Flattening is achieved for the entire C-band and L-bands. Experimental results showed that the hybrid amplifier has the average Gain of more than 19 dB in the wavelength range between 1530 and 1600 nm, with the Noise Figure of less than 6 decibels. The Gain of the Erbium Doped Fiber Amplifier and Raman was optimized to minimize the ripple value as low as 0.045 decibels with an output power of 15.265 decibel-milli.

© 2012 OSA

Original Manuscript: December 14, 2011
Published: September 28, 2012

S. M. Bilal, M. Zafrullah, and M. K. Islam, "Gain flattening of DWDM channels for the entire C & L bands," J. Opt. Technol. 79, 557-560 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. Masuda and S. Kawai, “Wide band and gain-flattened hybrid fiber amplifier consisting of an EDFA and multiwavelength pumped RAMAN amplifier,” IEEE Photon. Technol. Lett. 11, No. 6, 647 (1999). [CrossRef]
  2. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, Y. Nishida, and Y. Ohishi, “Low noise and gain-flattened Er3+-doped tellurite fiber amplifier,” in Tech. Dig. Optical Amplifiers and Their Applications OAA, TuC2 (1998), pp. 103–106.
  3. P. F. Wysocki, J. B. Juskins, R. P. Espindola, M. Andrejco, and A. M. Vengasarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, No. 10, 1343 (1997). [CrossRef]
  4. Y. Sun, J. W. Sulhoff, A. K. Srivastava, A. Abramov, T. A. Strasser, P. F. Wysocki, J. R. Pedrazzani, J. B. Judkins, R. P. Espindola, C. Wolf, J. L. Zyskind, A. M. Vengsarkar, and J. Zhou, “A gain-flattened ultra wide band EDFA for high capacity WDM optical communications systems,” in Tech. Dig. European Conference on Optical Communication, ECOC, Vol. 1 (1998), pp. 53–54.
  5. S. Kawai, H. Masuda, K.-I. Suzuki, and K. Aida, “Ultrawide, 75-nm 3-dB gain-band optical amplifier utilizing gain-flattened erbium-doped fluoride fiber amplifier and discrete Raman amplification,” Electron. Lett. 34, No. 9, 897 (1998). [CrossRef]
  6. S. Kawai, H. Masuda, K.-I. Suzuki, and K. Aida, “Wide-bandwidth and long-distance WDM transmission using highly gain-flattened hybrid amplifier,” IEEE Photon. Technol. Lett. 11, No. 7, 886 (1999). [CrossRef]
  7. T. Sakamoto, S.-I. Aozasa, M. Yamada, and M. Shimizu, “Hybrid amplifiers consisting of EDFA and TDFA for WDM signals,” J. Lightwave Technol. 24, No. 6, 2287 (2006). [CrossRef]
  8. M. Karasek, M. Menif, and A. Bellemare, “Design of wideband hybrid amplifiers for local area networks,” IEE Proc. Optoelectron. 148, No. 3, 150 (2001). [CrossRef]
  9. M. M. J. Martini, C. E. S. Castellani, M. J. Pontes, M. R. N. Ribeiro, and H. J. Kalinowski, “Gain profile optimization for Raman + EDFA hybrid amplifiers with recycled pumps for WDM systems,” J. Microwaves, Optoelectron. Electromagn. Appl. 9, No. 2, 100 (2010).
  10. C. E. S. Castellani, S. P. N. Cani, M. E. V. Segatto, M. J. Pontes, and M. A. Romero, “Design methodology for multi-pumped discrete RAMAN amplifiers: case study employing photonic crystal fibers,” Opt. Express 17, No. 16, 14121 (2009). [CrossRef] [PubMed]
  11. S. M. Bilal, M. Zafrullah, and M. K. Islam, “Achieving gain flattening with enhanced bandwidth for long haul WDM systems,” J. Opt. Technol. 79, No. 2, 80 (2012). [CrossRef]
  12. S.-K. Liaw, K.-P. Ho, C.-K. Huang, W.-T. Chen, and Y.-L. Hsiao, “Investigate C+L band EDFA/Raman amplifiers by using the same pump lasers,” in 6th International Joint Conference on Information and Computing (JCIS2006), Kaohsoung, Taiwan(2006), PNC-II.
  13. Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical fiber amplifiers for WDM optical networks,” Bell Labs Tech. J. 4, No. 1, 187 (1999). [CrossRef]
  14. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, No. 3, 548 (2002). [CrossRef]
  15. S. Hwang, K.-W. Song, K.-U. Song, S.-H. Park, J. Nilsson, and K. Cho, “Comparative high power conversion efficiency of C-plus L-band EDFA,” Electron. Lett. 37, No. 25, 1539 (2001). [CrossRef]
  16. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley and Sons, USA, 2002).
  17. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers Fundamentals and Technology (Academic Press, 1999), p. 47.
  18. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).
  19. A. Carena, V. Curri, and P. Poggiolini, “On the optimization of hybrid Raman/Erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, No. 11, 1170 (2001). [CrossRef]
  20. U. Tiwari, K. Thyagarajan, and M. R. Shenoy, “Simulation and experimental characterization of Raman/EDFA hybrid amplifier with enhanced performance,” Opt. Commun. 82, No. 8, 1563 (2009). [CrossRef]
  21. M. M. J. Martini, C. E. S. Castellani, M. J. Pontes, M. R. N. Ribeiro, and H. l. Kalinowski, “Multipump optimization for RAMAN + EDFA hybrid amplifiers under pump residual recycling,” in SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference, IMOC (2009), pp. 117–121.
  22. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, No. 1, 159 (1998). [CrossRef]
  23. Y. Emori, S. Kado, and S. Namiki, “Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high power laser diodes,” Opt. Fiber Technol. 8, No. 2, 107 (2002). [CrossRef]
  24. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical fiber Raman amplifiers backward pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13, No. 9, 948 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited