OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 79, Iss. 9 — Sep. 1, 2012
  • pp: 588–598

Magnetorheological polishing of optical surfaces

V. I. Kordonskiĭ and S. R. Gorodkin  »View Author Affiliations

Journal of Optical Technology, Vol. 79, Issue 9, pp. 588-598 (2012)

View Full Text Article

Acrobat PDF (1370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper discusses the principle of magnetorheological (MR) polishing, which is widely used in the production of precision optics, and also presents the results of processing optical items of complex shape. The concept of ablation of material from the surface to be processed, based on the principle of conservation of momentum by the particles of a binary abrasive suspension, is considered in the theoretical part as applied to the method of MR polishing. According to the proposed model, the forces normal to the surface required for the incorporation of abrasive particles into the material being polished are provided by their interaction near the surface with the more massive baseline (magnetic) particles, which in the shear flow of the concentrated suspension are subject to fluctuations and exchange momentum with the abrasive particles.

© 2012 OSA

Original Manuscript: February 19, 2012
Published: September 28, 2012

V. I. Kordonskiĭ and S. R. Gorodkin, "Magnetorheological polishing of optical surfaces," J. Opt. Technol. 79, 588-598 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. I. Marinescu, E. Uhlmann, and T. Doi, Handbook of Lapping and Polishing (CRC Press, 2006).
  2. D. D. Walker, A. T. H. Beaucamp, D. Brooks, R. Freeman, A. King, G. McCavana, R. Morton, D. Riley, and J. Simms, “Novel CNC polishing process for control of form and texture on aspheric surfaces,” Proc. SPIE 451, 267 (2001). [CrossRef]
  3. A. Momber and R. Kovacevic, Principles of Abrasive Water-Jet Machining (Springer, New York, 1998).
  4. S. M. Booij, “Fluid jet polishing,” doctoral thesis (Technische Universiteit Delft, 2003).
  5. Y. Mori, K. Yamauchi, and K. Endo, “Mechanism of atomic removal in elastic emission machining,” J. Jpn. Soc. Prec. Eng. 10, 24 (1997).
  6. W. Kordonsky, I. Prokhorov, S. Gorodkin, G. Gorodkin, L. Gleb, and B. Kashevsky, “Magnetorheological polishing devices and methods,” U.S. Patent 5 449 313 (1993).
  7. W. Kordonski, D. Golini, and S. Hogan, “System for abrasive jet shaping and polishing of a surface using magnetorheological fluid,” U.S. Patent 5 971 835 (1999).
  8. W. Kordonski and S. Jacobs, “Magnetorheological finishing,” Int. J. Mod. Phys. B-10, 2837 (1996).
  9. W. Kordonski, A. Shorey, and M. Tricard, “Magnetorheological jet-finishing technology,” J. Fluid Eng. 128, 20 (2006). [CrossRef]
  10. J. Lambropoulos, C. Miao, and S. Jacobs, “Magnetic-field effects on shear and normal stresses in magnetorheological finishing,” Opt. Express 18, 19713 (2010). [CrossRef] [PubMed]
  11. A. Shorey, S. Jacobs, W. Kordonski, and R. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20 (2001). [CrossRef] [PubMed]
  12. J. DeGroote, A. Marino, J. Wilson, A. Bishop, J. Lambropoulos, and S. Jacobs, “Removal-rate model for magnetorheological finishing (MRF) of glass,” Appl. Opt. 46, 7927 (2007). [CrossRef] [PubMed]
  13. C. Miao, S. Shafrir, J. Lambropoulos, and S. Jacobs, “Normal force in magnetorheological finishing,” Proc. SPIE 7426, 74260C (2009). [CrossRef]
  14. C. Miao, S. Shafrir, J. Lambropoulos, J. Mici, and S. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585 (2009). [CrossRef] [PubMed]
  15. Y. Dai, C. Song, X. Peng, and F. Shi, “Calibration and prediction of removal function in magnetorheological finishing,” Appl. Opt. 49, 298 (2010). [CrossRef] [PubMed]
  16. W. Kordonski and S. Gorodkin, “Material removal in magnetorheological finishing of optics,” Appl. Opt. 50, 1984 (2011). [CrossRef] [PubMed]
  17. W. Kordonski, “Elements and devices based on magnetorheological effect,” J. Intell. Mater. Syst. Struct. 4, 65 (1993). [CrossRef]
  18. J. Menapace, S. Dixit, F. Genin, and W. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220 (2003). [CrossRef]
  19. F. W. Preston, “The theory and design of plate-glass polishing machines,” J. Soc. Glass Technol. 11, 214 (1927).
  20. W. Kordonski and S. Gorodkin, “Magnetorheological measurements with consideration for the internal magnetic field in samples,” J. Phys.: Conf. Ser. 149, 012064 (2009). [CrossRef]
  21. G. Basim, I. Vakarelski, and M. B. Moudgil, “Role of interaction forces in controlling the stability and polishing performance of CMP slurries,” J. Colloid Interface Sci. 263, 506 (2003). [CrossRef]
  22. H. Laun, C. Gabriel, and G. Schmidt, “Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T,” J. Non-Newtonian Fluid Mech. 148, 47 (2008). [CrossRef]
  23. H. H. Shen, “Granular shear flows—constitutive relations and internal structures,” in Fifteenth ASCE Engineering Mechanical Conference (Columbia University, 2002), pp. 1–7.
  24. A. Karion and M. Hunt, “Wall stress in granular Couette flow of mono-sized particles and binary mixtures,” Powder Technol. 109, 145 (2000). [CrossRef]
  25. W. Losert, L. Bocquet, T. Lubensky, and J. Gollub, “Particle dynamics in sheared granular matter,” Phys. Rev. Lett. 85, 1428 (2000). [CrossRef] [PubMed]
  26. Storm/CFD2000, www.adaptive-research.com.
  27. P. Perzyna, “Fundamental problems in viscoplasticity,” Adv. Appl. Mech. 9, 243 (1966).
  28. J. A. Tichy, “Hydrodynamic lubrication theory for the Bingham plastic flow model,” J. Rheol. 35, 477 (1991). [CrossRef]
  29. K. Gertzos, P. Nikolakopoulos, and C. Papadopoulos, “CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant,” Tribol. Int. 41, 1190 (2008). [CrossRef]
  30. http://www.tekscan.com/.
  31. S. Ang, T. Scholz, A. Klocke, and G. Schneider, “Determination of elastic/plastic transition of human enamel by nanoindentation,” Dent. Mater. 15, 1403 (2009). [CrossRef]
  32. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152 (1990). [CrossRef]
  33. Z. Shulman, V. Kordonski, E. Zaltsgendler, I. Prokhorov, B. Khusid, and S. Demchuk, “Structure, physical properties, and dynamics of magnetorheological suspensions,” Int. J. Multiphase Flow 12, 935 (1986). [CrossRef]
  34. A. Shorey, S. Gorodkin, and W. Kordonski, “Effect of process parameters on surface morphology in MRF,” Proc. SPIE TD02, 69 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited