OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 80, Iss. 1 — Jan. 1, 2013
  • pp: 1–6

Attenuation modulation of guided modes in optical fibers with a coating based on vanadium dioxide

D. S. Agafonova, V. K. Grunin, and A. I. Sidorov  »View Author Affiliations

Journal of Optical Technology, Vol. 80, Issue 1, pp. 1-6 (2013)

View Full Text Article

Acrobat PDF (438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the results of experimental and theoretical studies of the optical characteristics of fibers made from silicate glasses with coatings in the form of a polycrystalline film or nanoparticles of vanadium dioxide in the wavelength range 0.8–1.8 ?m. It is shown that the variation of the optical properties of the coating with temperature causes efficient attenuation modulation of the optical signal in the fiber. The modulation depth in fibers with a nanocomposite coating is a factor of 3–4 times greater than in fibers with a thin-film coating. This is because plasma resonance is present in nanoparticles of vanadium dioxide in the metallic phase.

© 2013 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2370) Fiber optics and optical communications : Fiber optics sensors

Original Manuscript: April 24, 2012
Published: January 1, 2013

D. S. Agafonova, V. K. Grunin, and A. I. Sidorov, "Attenuation modulation of guided modes in optical fibers with a coating based on vanadium dioxide," J. Opt. Technol. 80, 1-6 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. A. Bugaev, B. P. Zakharchenya, and F. A. Chudnovski?, The Semiconductor–Metal Phase Transition and Its Application (Nauka, Leningrad, 1979).
  2. M. I. Grigor’ev, A. S. Ole?nik, and V. F. Smolyakov, “Thermochromic indicators based on phase-transition interference reversible light reflectors,” Élektron. Prom. 5–6, 108 (1982).
  3. O. B. Danilov, O. P. Mikheeva, A. I. Sidorov, V. A. Klimov, S. A. Tul’ski?, E. B. Shadrin, and I. L. Yachnev, “Optical limitation of mid-IR radiation in vanadium dioxide films,” Zh. Tekh. Fiz. 73, 79 (2003) [Tech. Phys.48, 73 (2003)].
  4. A. A. Bugaev and B. P. Zakharchenya, “Vanadium oxide film as a recording medium for holography,” Kvant. Elektron. (Moscow) 6, 1459 (1979) [Quantum Electron.9, 855 (1979)].
  5. O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 micrometer,” Opt. Zh. 66, No. 5, 13 (1999) [J. Opt. Technol.66, 391 (1999)].
  6. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lepine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor–metal phase transition in VO2,” J. Appl. Phys. 79, 2404 (1996). [CrossRef]
  7. A. Cavalleri, C. Toth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during ultrafast solid–solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001). [CrossRef]
  8. M. Rini, A. Cavalleri, R. W. Schoenlen, R. Lopez, L. C. Feldman, R. F. Haglud, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30, 558 (2005). [CrossRef]
  9. R. A. Aliev and V. A. Klimov, “Effect of synthesis conditions on the metal–semiconductor phase transition in vanadium dioxide thin films,” Fiz. Tverd. Tela 46, 515 (2004) [Phys. Solid State46, 532 (2004)].
  10. R. A. Aliev, V. N. Andreev, V. M. Kapralova, V. A. Klimov, A. I. Sobolev, and E. B. Shadrin, “Effect of grain sizes on the metal–semiconductor phase transition in vanadium dioxide polycrystalline thin films,” Fiz. Tverd. Tela 48, 874 (2006) [Phys. Solid State48, 929 (2006)].
  11. E. B. Shadrin, A. V. Il’inski?, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Fiz. Tverd. Tela 52, 2269 (2010) [Phys. Solid State52, 2426 (2010)].
  12. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglud, “Temperature-controlled surface plasmon resonance in VO2 nanorods,” Opt. Lett. 27, 1327 (2002). [CrossRef]
  13. O. P. Vinogradova, I. E. Obyknovennaya, A. I. Sidorov, V. A. Klimov, E. B. Shadrin, S. D. Khanin, and T. A. Khrushcheva, “Synthesis and the properties of vanadium dioxide nanocrystals in porous silicate glasses,” Fiz. Tverd. Tela 50, 734 (2008) [Phys. Solid State50, 768 (2008)].
  14. A. A. Ostrosablina, and A. I. Sidorov, “Nonlinear optical properties of thick composite media with vanadium dioxide nanoparticles. I. Self-defocusing of radiation in the visible and near-IR regions,” Opt. Zh. 72, No. 7, 36 (2005) [J. Opt. Technol.72, 530 (2005)].
  15. A. I. Sidorov, O. P. Vinogradova, T. A. Khrushcheva, I. E. Obyknovennaya, G. I. Ermolaeva, and V. B. Shilov, “Optical properties of vanadium dioxide nanoparticles in nanoporous glasses,” Opt. Zh. 75, No. 1, 43 (2008) [J. Opt. Technol.75, 33 (2008)].
  16. M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1?xWxO2 films,” Appl. Opt. 37, 1858 (1998). [CrossRef]
  17. A. P. Vinogradov, Electrodynamics of Composite Materials (Éditorial URSS, Moscow, 2001).
  18. J. E. Spanier, and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437(2000). [CrossRef]
  19. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).
  20. I. P. Kaminov, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396(1974). [CrossRef]
  21. O. V. Andreeva, and I. E. Obyknovennaya, “Nanoporous NPS-7 and NPS-17 arrays—possibilities of using them in an optical experiment,” Nanosis. Fiz. Khim. Matem. 1, No. 1, 37 (2010).
  22. I. K. Kikoin, Tables of Physical Quantities. A Handbook (Atomizdat, Moscow, 1976).
  23. V. V. Klimov, Nanoplasmonics (FIZMATLIT, Moscow, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited