OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 80, Iss. 1 — Jan. 1, 2013
  • pp: 64–67

Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal

Ya. A. Fofanov, I. V. Pleshakov, and Yu. I. Kuz’min  »View Author Affiliations

Journal of Optical Technology, Vol. 80, Issue 1, pp. 64-67 (2013)

View Full Text Article

Acrobat PDF (438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper demonstrates the use of laser radiation with deep polarization modulation as a method of investigating a magnetically ordered substance. Using a model sample—single-crystal iron borate—as an example, it is shown that this technique can be used to study magnetization processes. A qualitative picture is given of the formation of the polarization-optical response in the sample being magnetized, and the corresponding experimental characteristics are obtained. Sudden changes of the response are recorded that are associated with abrupt reconstruction of the domain structure. The approach thus developed can be useful in studies of the domain structure and of other features of the structure of materials for optoelectronics, nonlinear and magnetooptics, laser engineering, etc.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(210.0210) Optical data storage : Optical data storage
(230.0230) Optical devices : Optical devices
(250.0250) Optoelectronics : Optoelectronics
(260.0260) Physical optics : Physical optics

Original Manuscript: June 13, 2012
Published: January 1, 2013

Ya. A. Fofanov, I. V. Pleshakov, and Yu. I. Kuz’min, "Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal," J. Opt. Technol. 80, 64-67 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761 (1969). [CrossRef]
  2. J. Badoz, M. Billardon, J. C. Canit, and M. F. J. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” Optics (Paris) 8, 373 (1977).
  3. Ya. A. Fofanov, “Threshold sensitivity in optical measurements with phase modulation,” Proc. SPIE 1811, 413 (1992). [CrossRef]
  4. I. M. Sokolov and Ya. A. Fofanov, “Differential recording of polarization-modulated optical signals,” Nauch. Prib. 18, No. 1, 16 (2008).
  5. Y. Shindo, K. Mizuno, M. Sudani, H. Hayakawa, Y. Ohmi, N. Sakayanagi, and N. Takeuchi, “New polarization-modulation spectrometer for simultaneous circular dichroism and optical rotatory dispersion measurements. II. Design, analysis, and evaluation of prototype model,” Rev. Sci. Instrum. 60, 3633 (1989). [CrossRef]
  6. O. Acher, E. Bigan, and B. Drevillon, “Improvements of phase-modulated ellipsometry,” Rev. Sci. Instrum. 60, 65 (1989). [CrossRef]
  7. Y. Shindo, K. Kani, J. Horinaka, R. Kuroda, and T. Harada, “The application of polarization modulation method to investigate the optical homogeneity of polymer films,” J. Plast. Film Sheeting 17, No. 2, 164 (2001).
  8. K. D. Osborn, M. K. Singh, R. J. B. Urbauer, and C. K. Johnson, “Maximum-likelihood approach to single-molecule polarization modulation analysis,” Chem. Phys. Chem. 4, 1005 (2003). [CrossRef]
  9. V. K. Gupta, J. A. Kornfield, A. Ferencz, and G. Wegner, “Controlling molecular order in ‘Hairy-Rod’ Langmuir-Blodgett films: A polarization-modulation microscopy study,” Science 265, No. 5174, 940 (1994). [CrossRef]
  10. I. M. Sokolov and Ya. A. Fofanov, “Investigations of the small birefringence of transparent objects by strong phase modulation of probing laser radiation,” J. Opt. Soc. Am. A 12, 1579 (1995). [CrossRef]
  11. Ya. A. Fofanov, I. I. Afanas’ev, and S. N. Borozdin, “Structural birefringence in crystals of optical fluorite,” Opt. Zh. 65, No. 9, 22 (1998) [J. Opt. Technol.65, 700 (1998)].
  12. Ya. A. Fofanov, I. V. Pleshakov, and I. M. Sokolov, “Detection of nonsteady-state polarization responses in the optical and radio ranges,” Nauch. Prib. 20, No. 2, 3 (2010).
  13. R. Diehl, W. Jantz, B. I. Nolang, and W. Wettling, “Growth and properties of iron borate, FeBO3,” Curr. Top. Mater. Sci. 11, 241 (1984).
  14. A. J. J. Kurtzig, “Faraday rotation in birefringent crystals,” Appl. Phys. 42, 3494 (1971). [CrossRef]
  15. N. M. Salanski, E. A. Glozman, and V. N. Seleznev, “NMR and the domain structure in single crystal FeBO3,” Zh. Eksp. Teor. Fiz. 68, 1413 (1975) [Sov. Phys. JETP41, 704 (1975)].
  16. G. B. Scott, “Magnetic domain properties of FeBO3,” J. Phys. D 7, 1574 (1974). [CrossRef]
  17. V. M. Rudyak, “The Barkhausen effect,” Usp. Fiz. Nauk 101, 429 (1970) [Sov. Phys. Usp.13, 461 (1971)]. [CrossRef]
  18. A. L. Andreev, I. N. Kompanets, T. B. Andreeva, and Yu. P. Shumkina, “Dynamics of domain wall motion in ferroelectric liquid crystals in an electric field,” Fiz. Tverd. Tela 51, 2275 (2009) [Phys. Solid State51, 2415 (2009)]. [CrossRef]
  19. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics (Fizmatlit, Moscow, 2004), p. 473.
  20. N. R. Ivanov, N. A. Tikhomirova, A. V. Ginzberg, S. P. Chumakova, É. I. Eknadiosyants, V. Z. Borodin, A. N. Pinskaya, V. A. Babanskikh, and V. A. D’yakov, “Domain structure of KTiOPO4,” Kristallografiya 39, 659 (1994) [Crystallogr. Rep.39, 593 (1994)].
  21. I. M. Sokolov and Ya. A. Fofanov, “Sub-Poissonian single-mode lasing in a semiconductor laser with an external cavity,” Opt. Zh. 70, No. 1, 46 (2003) [J. Opt. Technol.70, 38 (2003)]. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited