OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 80, Iss. 3 — Mar. 1, 2013
  • pp: 179–186

How the deposition conditions of films of the oxides of semiconductors and metals affect the orientation of liquid crystals

L. P. Amosova  »View Author Affiliations


Journal of Optical Technology, Vol. 80, Issue 3, pp. 179-186 (2013)
http://dx.doi.org/10.1364/JOT.80.000179


View Full Text Article

Acrobat PDF (736 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This review discusses how the main parameters of the deposition regimes of the oxides of semiconductors and metals affect the structure and relief of a precipitated film and analyzes the orientation mechanisms of liquid crystals (LCs) by means of such films. The dependence between the deposition angles, the tilt of the crystallites, and the tilt of the LC director is reported. It is shown that, when the deposition angle of the orienting film is increased relative to the substrate plane, it can be energetically favorable to make a transition either to the planar or the homeotropic orientation of the LC, depending on the film-deposition rate.

© 2013 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices

History
Original Manuscript: September 5, 2012
Published: April 30, 2013

Citation
L. P. Amosova, "How the deposition conditions of films of the oxides of semiconductors and metals affect the orientation of liquid crystals," J. Opt. Technol. 80, 179-186 (2013)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-80-3-179


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid-crystal cells,” Appl. Phys. Lett. 92, 061102 (2008). [CrossRef]
  2. J. L. Janning, “Thin-film surface orientation for liquid crystals,” Appl. Phys. Lett. 21, 173 (1972). [CrossRef]
  3. O. B. Gorbunov, A. A. Mukhaev, S. P. Kurchatkin, V. P. Sevost’yanov, V. Ya. Filipchenko, and S. Kh. Finkil’shteĭn, “The orientation of liquid crystals by means of obliquely deposited films of germanium monoxide,” Neorg. Mater. 19, 467 (1983).
  4. Zh. Kon’yar, Orientation of Nematic Liquid Crystals and Their Mixtures (Universitetskoe, Minsk, 1986).
  5. T. Wilson, G. D. Boyd, E. H. Westerwick, and F. G. Storz, “Alignment of liquid crystals on surfaces with film deposited obliquely at low and high rates,” Mol. Cryst. Liq. Cryst. 94, 359 (1983). [CrossRef]
  6. L. A. Goodman, J. T. McGinn, C. H. Anderson, and F. Digeronomo, “Topography of obliquely evaporated silicon oxide films and its effects on liquid-crystal orientation,” IEEE Trans. Electron Devices 24, 795 (1977). [CrossRef]
  7. W. Urbach, M. Boix, and E. Guyon, “Alignment of nematics and smectics on evaporated films,” Appl. Phys. Lett. 25, 479 (1974). [CrossRef]
  8. W.-R. Liou, C.-Y. Chen, J.-J. Ho, C.-K. Hsu, C.-C. Chang, R. Y. Hsiao, and S.-H. Chang, “An improved alignment layer grown by oblique evaporation for liquid-crystal devices,” Displays 27, No. 2, 69 (2006). [CrossRef]
  9. M. Mokade, Ph. Martinot-Lagarge, G. Durand, and C. Granjean, “SiO evaporated films topography and nematic liquid-crystal orientation,” J. Phys. II France No. 7, 1577 (1997).
  10. M. Mokade, M. Boix, and G. Durand, “Order electricity and oblique nematic orientation on rough solid surfaces,” Europhys. Lett. 5, 697(1988). [CrossRef]
  11. Z. Celinski, L. Reisman, I. Harward, and A. Glushchenko, “New alignment liquid-crystal techniques for operation at harsh ambient conditions and high intensity light,” Proc. SPIE 7329, 73290 (2009). [CrossRef]
  12. E. A. Konshina, M. A. Fedorov, L. P. Amosova, and Yu. M. Voronin, “Effect of surface on phase modulation of light in a nematic layer,” Zh. Tekh. Fiz. 78, No. 2, 71 (2008) [Tech. Phys. 53, 211 (2008)].
  13. L. Dong, R. W. Smith, and D. J. Srolovitz, “A two-dimensional molecular dynamics simulation of thin-film growth by oblique deposition,” J. Appl. Phys. 80, 5682 (1996). [CrossRef]
  14. J. Cheng, G. D. Boyd, and F. G. Storz, “A scanning electron microscope study of columnar topography and liquid-crystal alignment on obliquely deposited oxide surfaces at low rates,” Appl. Phys. Lett. 37, 716(1980). [CrossRef]
  15. E. A. Konshina, N. L. Ivanova, P. S. Parfenov, and M. A. Fedorov, “Reorientation dynamics of a dual-frequency nematic liquid crystal with quasi-homeotropic structure,” Opt. Zh. 77, No. 12, 45 (2010) [J. Opt. Technol. 77, 770 (2010)].
  16. Y.-P. Zhao, D.-X. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing-angle deposition,” Proc. SPIE 5219, 59 (2003). [CrossRef]
  17. R. N. Trait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196 (1993). [CrossRef]
  18. K. H. Muller, “Dependence of thin-film microstructure on deposition rate by means of a computer simulation,” J. Appl. Phys. 58, 2573 (1985). [CrossRef]
  19. S. M. Paik, S. Kim, I. K. Schuller, and R. Ramirez, “Surface kinetics and roughness on microstructure formation in thin films,” Phys. Rev. B 43, 1843 (1991). [CrossRef]
  20. C. Chen, P. J. Bos, and J. E. Anderson, “Anchoring transitions of liquid crystals on SiOx,” Liq. Cryst. 35, 465 (2008). [CrossRef]
  21. E. Dubois-Violette and P. G. de Gennes, “Effect of long-range van der Waals forces on the anchoring of a nematic fluid at an interface,” J. Colloid Interface Sci. 57, 403 (1976). [CrossRef]
  22. G. Barbero and G. Durand, “Order parameter spatial variation and anchoring energy for nematic liquid crystals,” J. Appl. Phys. 69, 6968 (1991). [CrossRef]
  23. W. R. Heffner, D. W. Berreman, M. Sammon, and S. Meiboom, “Light crystal alignment on surfactant-treated obliquely evaporated surfaces,” Appl. Phys. Lett. 36, 144 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited