OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 80, Iss. 5 — May. 1, 2013
  • pp: 263–268

Conductivity and photoconductivity of granular silver films on a sapphire substrate

E. V. Vashchenko, I. A. Gladskikh, S. G. Przhibel’skiĭ, V. V. Khromov, and T. A. Vartanyan  »View Author Affiliations

Journal of Optical Technology, Vol. 80, Issue 5, pp. 263-268 (2013)

View Full Text Article

Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The photoelectric properties of a high-resistance silver film on sapphire, consisting of granules 15–20 nm across with the same intervals between them, have been investigated. The ohmic conductivity of the film increased with temperature. Photoconductivity is detected in the film when optical radiation with wavelengths up to the red limit of the photoelectric effect acts on it. A sign change of the photocurrent is detected in the photoconductivity spectrum when the current through the film increases under the action of radiation with wavelength less than 460 nm, whereas it decreases when the wavelength is greater than 460 nm. A conductivity and photoconductivity model is proposed that is based on doping of the dielectric substrate due to the metallic nanoparticles placed on it and the motion of electrons over traps in the substrate. The position of the bottom of the conduction band of the dielectric relative to the Fermi level for silver is calculated in terms of the model.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4990) Other areas of optics : Particles
(160.4236) Materials : Nanomaterials

Original Manuscript: October 12, 2012
Published: May 21, 2013

E. V. Vashchenko, I. A. Gladskikh, S. G. Przhibel’skiĭ, V. V. Khromov, and T. A. Vartanyan, "Conductivity and photoconductivity of granular silver films on a sapphire substrate," J. Opt. Technol. 80, 263-268 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. C.  Roco, R. S.  Williams, P.  Alivisatos, eds., Nanotechnology Research Directions: IWGN Workshop Report: Vision for Nanotechnology R & D in the Next Decade (Kluwer Academic, Boston, 2001; Mir, Moscow, 2002).
  2. B.  Bhushan, ed., Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).
  3. V. I.  Arzhantsev, White Book on Nanotechnologies: Studies in Nanoparticles, Nanostructures, and Nanocomposites in the Russian Federation: from the Materials of the First All-Russia Conference of Scientists, Engineers, and Manufacturers in the Area of Nanotechnologies: A Collection (URSS, Moscow, 2008).
  4. C. A.  Neugebauer M. N.  Web, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys. 33, 74 (1962). [CrossRef]
  5. K. L.  Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).
  6. S.  Wagner A.  Pundt, “Conduction mechanisms during the growth of the Pd thin films: experiment and model,” Phys. Rev. B 78, 155131 (2008). [CrossRef]
  7. D. A.  Zakge?m, I. V.  Rozhanski?, I. P.  Smirnova, “Temperature dependence of the conductivity of Cu:SiO2 composite films. Experiment and numerical simulation,” Zh. Eksp. Teor. Fiz. 118, 637 (2000) [Sov. Phys. JETP 91, 553 (2000)].
  8. I. E.  Efimov, I. Ya.  Kozyr’, Yu. I.  Gorbunov, Microelectronics (Vysshaya Shkola, Moscow, 1986).
  9. É. L.  Nolle M. Ya.  Shchelev, “Photoelectron emission caused by surface plasmons in silver nanoparticles,” Pis’ma Zh. Eksp. Teor. Fiz. 30, No. 8, 1 (2004) [JETP Lett. 30, 304 (2004)].
  10. A. P.  Boltaev, N. A.  Penin, A. O.  Pogosov, F. A.  Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].
  11. K.  Oura, V. G.  Lifshits, A. A.  Saranin, Introduction to Surface Physics (Nauka, Moscow, 2006).
  12. V. V.  Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
  13. D. K.  Nikiforov, “Emitting thin-film Al–Al2O3 and Be–BeO structures under the conditions of ion–electron bombardment,” Author’s abstract of dissertation for candidate of physicomathematical sciences, Moscow (2006).
  14. W. J.  Gignak, R. S.  Williams, S. P.  Kowalczyk, “Valence- and conduction-band structure of sapphire (1102) surface,” Phys. Rev. B 32, 1237 (1985). [CrossRef]
  15. T. V.  Perevalov V. A.  Gritsenko, “Application and electronic structure of high-permittivity dielectrics,” Usp. Fiz. Nauk 180, 587 (2010) [Phys. Usp. 53, 561 (2010)]. [CrossRef]
  16. V. A.  Pustovarov, V. Sh.  Aliev, T. V.  Perevalov, “Electronic structure of an oxygen vacancy in Al2O3 from the results of ab initio quantum-chemical calculations and photoluminescence experiments,” Zh. Eksp. Teor. Fiz. 138, 1119 (2010) [JETP 111, 989 (2010)].
  17. A.  Sasahara, H.  Uetsuka, H.  Onishi, “Noncontact-mode atomic-force microscopy observation of an ?-Al2O3 (0001) surface,” Jpn. J. Appl. Phys. 39, 3773 (2000). [CrossRef]
  18. B. K.  Ridley, Quantum Processes in Semiconductors (Oxford University Press, New York, 1999; Mir, Moscow, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited