OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 80, Iss. 7 — Jul. 1, 2013
  • pp: 409–414

Contribution of the inverse flexoelectric effect to counterpropagating two-wave mixing of light beams in photorefractive crystals

S. M. Shandarov, S. S. Shmakov, P. V. Zuev, N. I. Burimov, Yu. F. Kargin, V. V. Shepelevich, P. I. Ropot, and V. G. Gudelev  »View Author Affiliations

Journal of Optical Technology, Vol. 80, Issue 7, pp. 409-414 (2013)

View Full Text Article

Acrobat PDF (405 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the results of a theoretical analysis of the contribution of the inverse flexoelectric and photoelastic effects to the photorefractive response that accompanies counterpropagating mixing of a steady-state reference wave with a phase-modulated signal wave on reflective holograms in samples of X-cut crystals of symmetry classes 23, 4¯3m, 4¯2m, 422, 622, 222, and 3m. Experimental studies of such mixing of waves with circular polarization of opposite signs in a Ba12TiO20:Ni crystal made it possible to estimate its flexoelectric coefficient.

© 2013 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(050.7330) Diffraction and gratings : Volume gratings
(090.2880) Holography : Holographic interferometry
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing
(050.5298) Diffraction and gratings : Photonic crystals

Original Manuscript: December 14, 2012
Published: July 5, 2013

S. M. Shandarov, S. S. Shmakov, P. V. Zuev, N. I. Burimov, Yu. F. Kargin, V. V. Shepelevich, P. I. Ropot, and V. G. Gudelev, "Contribution of the inverse flexoelectric effect to counterpropagating two-wave mixing of light beams in photorefractive crystals," J. Opt. Technol. 80, 409-414 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. P.  Petrov, S. I.  Stepanov, A. V.  Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992).
  2. S. I.  Stepanov, “Applications of photorefractive crystals,” Rep. Prog. Phys. 57, 39 (1994). [CrossRef]
  3. L.  Solymar, D. J.  Webb, A.  Grunnet-Jepsen, The Physics and Application of Photorefractive Materials (Clarendon Press, Oxford, 1996).
  4. P.  Delaye, A.  Blouin, D.  Drolet, L.-A.  De Montmorillon, G.  Roosen, J.-P.  Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723 (1997). [CrossRef]
  5. A. A.  Kamshiln, E.  Raita, K.  Paivasaari, T.  Jaaskelainen, Yu. N.  Kulchin, “Photorefractive correlation filtering of time-varying laser speckles for vibration monitoring,” Appl. Phys. Lett. 73, 1466 (1998). [CrossRef]
  6. A. A.  Kamshiln, Y.  Iida, S.  Ashihara, T.  Shimura, K.  Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575 (1999). [CrossRef]
  7. Yu. N.  Kul’chin, O. B.  Vitrik, A. A.  Kamshilin, R. V.  Romashko, Adaptive Methods of Processing Speckle-Modulated Optical Fields (Fizmatlit, Moscow, 2009).
  8. M. D.  Ewbank, R. A.  Vazquez, R. R.  Neurgaonkar, F.  Vachss, “Contradirectional two-beam coupling in absorptive photorefractive materials: application to Rh-doped strontium barium niobate (SBN:60),” J. Opt. Soc. Am. B 12, 87 (1995). [CrossRef]
  9. G.  Cook, C. J.  Finnan, D. C.  Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B. 68, 911 (1999).
  10. A.  Radoua, P.  Delaye, R.  Pankrath, G.  Roosen, “Characterization of the photorefractive BCT:Rh crystals at 1.06 ?m by two-wave mixing,” J. Opt. A 5, S477 (2003). [CrossRef]
  11. N.  Kukhtarev, B. S.  Chen, P.  Venkateswarlu, G.  Salamo, M.  Klein, “Reflection holographic gratings in [111] cut Bi12TiO20 crystal for real-time interferometry,” Opt. Commun. 104, 23 (1993). [CrossRef]
  12. S.  Mallick, M.  Miteva, L.  Nikolova, “Polarization properties of self-diffraction in sillenite crystals: reflection volume gratings,” J. Opt. Soc. Am. B 14, 1179 (1997). [CrossRef]
  13. E. Yu.  Ageev, S. M.  Shandarov, S. Yu.  Veretennikov, A. G.  Mart’yanov, V. A.  Kartashov, A. A.  Kamshilin, V. V.  Prokof’ev, V. V.  Shepelevich, “Two-beam coupling on the reflection grating in a Bi12TiO20 crystal,” Kvant. Elektron. 31, 343 (2001) [Quantum Electron. 31, 343 (2001)].
  14. S.  Di Girolamo, A. A.  Kamshilin, R. V.  Romashko, Yu. N.  Kulchin, J.-C.  Launay, “Fast adaptive interferometer on dynamic reflection hologram in CdTe:V,” Opt. Express 15, 545 (2007). [CrossRef]
  15. S. M.  Shandarov, N. I.  Burimov, Yu. N.  Kul’chin, R. V.  Romashko, A. L.  Tolstik, V. V.  Shepelevich, “Dynamic Denisyuk holograms in cubic photorefractive crystals,” Kvant. Elektron. 38, 1059 (2008) [Quantum Electron. 38, 1059 (2008)].
  16. A. A.  Kamshilin, R. V.  Romashko, Yu. N.  Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009). [CrossRef]
  17. A. A.  Kolegov, S. M.  Shandarov, G. V.  Simonova, L. A.  Kabanova, N. I.  Burimov, S. S.  Shmakov, V. I.  Bykov, Yu. F.  Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Kvant. Elektron. 41, 847 (2011) [Quantum Electron. 41, 847 (2011)].
  18. J. W.  Wagner, J. B.  Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316 (1987). [CrossRef]
  19. T. J.  Hall, M. A.  Fiddy, M. S.  Ner, “Detector for an optical-fiber acoustic sensor using dynamic holographic interferometry,” Opt. Lett. 5, 485 (1980). [CrossRef]
  20. V. L.  Indenbom, E. B.  Loginov, M. A.  Osipov, “The flexoelectric effect and the structure of crystals,” Kristallografiya. 26, 1157 (1981) [Sov. Phys. Crystallogr. 26, 656 (1981)].
  21. J. Y.  Fu, W.  Zhu, N.  Li, L. E.  Cross, “Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition,” J. Appl. Phys. 100, 024112 (2006). [CrossRef]
  22. B.  Hu, W.  Zhu, N.  Li, L. E.  Cross, “Flexure mode flexoelectric piezoelectric composites,” J. Appl. Phys. 106, 104109 (2009). [CrossRef]
  23. S. M.  Shandarov, S. S.  Shmakov, N. I.  Burimov, O. S.  Syuvaeva, Yu. F.  Kargin, V. M.  Petrov, “Detection of the contribution of the inverse flexoelectric effect to the photorefractive response in a bismuth titanium oxide single crystal,” Pis’ma Zh. Eksp. Teor. Fiz. 95, 699 (2012) [JETP Lett. 95, 618 (2012)].
  24. H.  Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  25. P.  Taebaty, D.  Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991). [CrossRef]
  26. R. V.  Romashko, Yu. N.  Kulchin, A. A.  Kamshilin, “Linear phase demodulation via reflection photorefractive holograms,” in Photorefractive Effects, Materials, and Devices, G.  Zhang, D.  Kip, D.  Nolte, J.  Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), pp. 675–680.
  27. S. M.  Shandarov, A. A.  Kolegov, N. I.  Burimov, V. I.  Bykov, V. M.  Petrov, Yu. F.  Kargin, “Two-wave mixing on reflection dynamic gratings in sillenite crystals under phase modulation of signal beam,” Phys. Wave Phenom. 17, No. 1, 39 (2009).
  28. S.  Shandarov, “Influence of piezoelectric effect on photorefractive gratings in electro-optic crystals,” Appl. Phys. A 55, 91 (1992). [CrossRef]
  29. A. D.  Vuzhva, V. E.  Lyamov, “Acoustic activity and other effects caused by spatial dispersion in crystals,” Kristallografiya 22, 131 (1977) [Sov. Phys. Crystallogr. 22, 73 (1977)].
  30. V. E.  Lyamov, Polarization Effects and Anisotropy of the Mixing of Acoustic Waves in Crystals (Izd. Mosk. Univ, Moscow, 1983).
  31. Yu. I.  Sirotin, M. P.  Shaskol’skaya, Principles of Crystallography (Nauka, Moscow, 1975).
  32. V.  Petrov, J.  Hahn, J.  Petter, M.  Petrov, T.  Tschudi, “Precise subnanometer control of the position of a macro object by light pressure,” Opt. Lett. 30, 3138 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited