OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 80, Iss. 7 — Jul. 1, 2013
  • pp: 444–449

Construction of adaptive spectral analyzers on the basis of acousto-optic spectrometers

A. V. Fadeyev and V. E. Pozhar  »View Author Affiliations

Journal of Optical Technology, Vol. 80, Issue 7, pp. 444-449 (2013)

View Full Text Article

Acrobat PDF (716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper discusses the problem of selecting the working spectral points in the method of selective spectral recording, used to detect contaminants in air by means of differential optical absorption spectroscopy on acousto-optic spectrometers with random spectral addressing. Reducing the number of recorded points of the spectrum, which allows the measurement time to be reduced by an order of magnitude, can simultaneously decrease the selectivity of the analysis, and this presents a problem if the composition of the impurity substances is unknown. A partial solution of the problem is proposed that consists of a preliminary study of the variations of the spectra of the gas mixture, and this makes it possible to statistically distinguish the main variable components in the composition of the gaseous mixture and to identify them with definite gases. Versions are proposed for the construction of adaptive systems based on acousto-optic spectrometers and using the technique developed here.

© 2013 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.1040) Optical devices : Acousto-optical devices
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6190) Spectroscopy : Spectrometers

Original Manuscript: February 4, 2013
Published: July 5, 2013

A. V. Fadeyev and V. E. Pozhar, "Construction of adaptive spectral analyzers on the basis of acousto-optic spectrometers," J. Opt. Technol. 80, 444-449 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. E.  Harris, R. W.  Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744 (1969). [CrossRef]
  2. Ch. V.  Gazarov, V. E.  Pozhar, V. N.  Zhogun, “Acousto-optical spectrometer for air-pollution monitoring,” Proc. SPIE 2107, 143 (1993). [CrossRef]
  3. A. V.  Fadeyev, V. E.  Pozhar, “Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy,” Proc. SPIE 8535, 85350C (2012). [CrossRef]
  4. V. E.  Pozhar, V. I.  Pustovoit, “New DOAS technique based on acousto-optic spectrometer,” Proc. SPIE 3818, 69 (1999). [CrossRef]
  5. V. I.  Pustovoit, V. E.  Pozhar, “Long-path optical spectral AOTF-based gas analyzer,” Proc. SPIE 4574, 174 (2001).
  6. U.  Platt, D.  Perner, H. W.  Patz, “Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329 (1979). [CrossRef]
  7. A.  Hyvarinen, J.  Karhunen, E.  Oja, Independent Component Analysis (Wiley, New York, 2001), p. 481.
  8. V. É.  Pozhar, V. I.  Pustovo?t, “Concerning the optimum algorithm for spectral chemical analysis by means of acousto-optical spectrometers,” Élektromag. Volny Élekt. Sistemy 2, No. 4, 26 (1997).
  9. A. V.  Fadeyev, V. E.  Pozhar, “Optimization of measuring and calibration procedures for gas analyser based on acousto-optical tunable filters,” Proc. SPIE 8082, 808242 (2011). [CrossRef]
  10. M. M.  Mazur, V. É.  Pozhar, V. N.  Shorin, Z. A.  Magomedov, “Gas analyzer,” Russian Patent No. 2095788 (1996).
  11. M. M.  Mazur, V. N.  Shorin, V. I.  Pustovo?t, V. É.  Pozhar, A. V.  Fadeev, “Gas-analytic acousto-optic spectrometer–gas analyzer GAOS,” Prib. Tekh. Éksp. 2, 140 (2011).
  12. J.  Stutz, U.  Platt, “Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods,” Appl. Opt. 35, 6041 (1996). [CrossRef]
  13. M.  Hausmann, U.  Brandenburger, T.  Brauers, H. P.  Dorn, “Simple Monte-Carlo methods to estimate the spectra evaluation error in differential-optical-absorption spectroscopy,” Appl. Opt. 38, 462 (1999). [CrossRef]
  14. P.  Comon, C.  Jutten, Handbook of Blind Source Separation, Independent Component Analysis and Applications (Academic Press, Oxford, 2010), Chap. 1, pp. 1–22.
  15. H. H.  Kim, S. H.  Han, H. D.  Bae, “Separation of DOAS measurements data by independent component analysis,” Key Eng. Mater. 270, 703 (2004). [CrossRef]
  16. V. D.  Calhoun, T.  Adali, G. D.  Pearlson, J. J.  Pekar, “Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms,” Hum. Brain Mapp. 13, 43 (2001). [CrossRef]
  17. A.  Hyvarinen, E.  Oja, “A fast fixed-point algorithm for independent component analysis,” Neural Comput. 9, 1483 (1997). [CrossRef]
  18. A.  Bell, T.  Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129 (1995). [CrossRef]
  19. J.-F.  Cardoso, “High-order contrasts for independent component analysis,” Neural Comput. 11, 157 (1999). [CrossRef]
  20. Y. B.  Monakhova, S. A.  Astakhov, A.  Kraskov, S. P.  Mushtakova, “Independent components in spectroscopic analysis of complex mixtures,” Chemom. Intell. Lab. Syst. 103, 108 (2010).
  21. J.  Jaumot, R.  Gargallo, A.  de Juan, R.  Tauler, “A graphical user-friendly interface for mcr-als: a new tool for multivariate curve resolution in matlab,” Chemom. Intell. Lab. Syst. 76, 101 (2005).
  22. S.  Amari, A.  Cichocki, H.  Yang, “A new learning algorithm for blind signal separation,” in Advances in Neural Information Processing Systems, 1996, vol. 8, pp. 752–763.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited