OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 80, Iss. 9 — Sep. 1, 2013
  • pp: 566–570

Mathematical modelling of signals recorded in noninvasive medical laser fluorescence diagnosis

D. A. Rogatkin and O. D. Smirnova  »View Author Affiliations


Journal of Optical Technology, Vol. 80, Issue 9, pp. 566-570 (2013)
http://dx.doi.org/10.1364/JOT.80.000566


View Full Text Article

Acrobat PDF (1798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the Kubelka–Munk two-flux model modified by the authors, which makes it possible in one-dimensional problems to obtain exact analytical expressions for radiation fluxes at the boundary of a turbid medium, and Kokhanovsky’s solution for the radiation flux of fluorescence, questions are considered of modelling the spectrum of stimulated endogenous fluorescence of biological tissues as applied to problems of noninvasive medical diagnosis. An analytical expression is presented for the spectral distortion function, which depends on the scattering and absorption properties of cellular biological tissues and blood. It is shown that the model spectra agree well with the experimental data.

© 2013 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

History
Original Manuscript: January 21, 2013
Published: November 27, 2013

Citation
D. A. Rogatkin and O. D. Smirnova, "Mathematical modelling of signals recorded in noninvasive medical laser fluorescence diagnosis," J. Opt. Technol. 80, 566-570 (2013)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-80-9-566


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).
  2. M. A.  Mycek, B. W.  Pogue, Handbook of Biomedical Fluorescence (Marcel Dekker Inc., New York, 2003).
  3. F.  Leblond, S.  Davis, P.  Valdes, B.  Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010). [CrossRef]
  4. P.  Bonfert-Taylor, F.  Leblond, R.  Holt, K.  Tichauer, B.  Pogue, E.  Taylor, “Information loss and reconstruction in diffuse fluorescence tomography,” J. Opt. Soc. Am. A 29, 321 (2012). [CrossRef]
  5. D. A.  Rogatkin, “Instrumental and methodological errors of measurements in noninvasive medical spectrophotometry,” in Materials of the Third Eurasian Congress with Respect to Medical Physics and Engineering, Medical Physics-2010 (MGU, Moscow, 2010), pp. 38–41.
  6. W. J. M.  Putten, M. J. C.  Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639 (1983). [CrossRef]
  7. D.  Rogatkin, V.  Svirin, G.  Hachaturyan, “The theoretical model for fluorescent field calculation in nonhomogeneous and scattering biological tissues,” Proc. SPIE 3563, 125 (1998).
  8. D. A.  Rogatkin, V. V.  Tchernyi, “Mathematical simulation as a key point of the laser fluorescence diagnostic technique in oncology,” Proc. SPIE 4059, 73 (2000). [CrossRef]
  9. E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011). [CrossRef]
  10. S.  Kanick, D.  Robinson, C.  Sterenborg, A.  Amelink, “Extraction of intrinsic from single-fiber fluorescence measurements on a turbid medium,” Opt. Lett. 37, 948 (2012). [CrossRef]
  11. A. A.  Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 26, 1896 (2009). [CrossRef]
  12. D. A.  Rogatkin, “On a feature in determining the optical properties of turbid biological tissues and media in calculational problems of medical noninvasive spectrophotometry,” Medits. Tekhn. No. 2, 10 (2007).
  13. A. R.  Subbotin, T. A.  Savel’eva, S. A.  Goryaĭnov, “Algorithm for processing the fluorescence spectra of protoporphyrin IX and the endogenous fluorophores in glial tumors of the brain,” in Collection of the Materials of the Fifth Troitsk Conference on Medical Physics and Innovation in Medicine, Troitsk, 2012, vol. 1, pp. 268–269.
  14. D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009). [CrossRef]
  15. , “Optical colored glass,” Izd. Standartov, Moscow, 1976.
  16. D. A.  Rogatkin, “Physical principles of optical oximetry,” Medits. Fiz. No. 2, 97 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited