OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 81, Iss. 1 — Jan. 1, 2014
  • pp: 33–38

Experimental study of the spread function and resolving power of an optical digital spectrograph based on an MFS polychromator

A. I. Drobyshev and S. S. Savinov  »View Author Affiliations

Journal of Optical Technology, Vol. 81, Issue 1, pp. 33-38 (2014)

View Full Text Article

Acrobat PDF (938 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper gives the results of experimental studies of the spread function and practical resolving power of a digital spectrograph based on an MFS-8 spectral device and an MAES linear photodiode array. It is established that, as the width of the spectrograph’s exit slit increases from 3 to 100 μm, the spread function remains bell-shaped, with the maximum in the middle. The recorded spectral lines become narrower than the entrance slit as it increases above 15–30 μm. The experimental values of the practical resolving power monotonically increase as the slit width decreases from 90 to 10 μm, and then remain constant for 6 and 3 μm.

© 2014 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

Original Manuscript: March 15, 2013
Published: March 6, 2014

A. I. Drobyshev and S. S. Savinov, "Experimental study of the spread function and resolving power of an optical digital spectrograph based on an MFS polychromator," J. Opt. Technol. 81, 33-38 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. I. R.  Shelpakova, V. G.  Garanin, V. A.  Labusov, “Multielement solid-state detectors and their use in atomic-emission analysis (Review),” Zavod. Lab. Diag. Mat. 65, No. 10, 3 (1999).
  2. V. A.  Labusov, A. N.  Put’makov, I. A.  Zarubin, V. G.  Garanin, “New multichannel optical spectrometers based on MAES analyzers,” Zavod. Lab. Diag. Mat. 78, No. 1, Part II, 7 (2012).
  3. V. G.  Garanin, O. A.  Neklyudov, D. V.  Petrochenko, Z. V.  Semenov, I. G.  Shatalov, S. V.  Pankratov, “Software for atomic-emission spectral analysis,” Zavod. Lab. Diag. Mat. 78, No. 1, Part II, 69 (2012).
  4. S. B.  Zayakina, A. N.  Put’makov, G. N.  Anoshin, “Modernization of the DFS-458 diffraction spectrograph: extending the possibilities of atomic-emission spectral analysis,” Analit. Kont. 9, 212 (2005).
  5. O. D.  Vernidub, G. E.  Lomakina, “Analysis of the materials of ferrous metallurgy by atomic emission with the inductively-coupled plasma method using MAES,” Zavod. Lab. Diag. Mat. 73, 54 (2007), special issue.
  6. N. L.  Chumakova, E. V.  Smirnova, “Determination of lanthanum, cerium, neodymium, ytterbium, and yttrium in geological samples, using a multichannel analyzer of atomic-emission spectra,” Zavod. Lab. Diag. Mat. 76, No. 3, 3 (2010).
  7. A. É.  Kokhanovskiĭ, “Using an MAES analyzer to identify kinds of resin mixtures,” Zavod. Lab. Diag. Mat. 78, No. 1, Part II, 98 (2012).
  8. I. V.  Peĭsakhson, The Optics of Spectral Devices (Mashinostroenie, Leningrad, 1975).
  9. A. N.  Zaĭdel’, G. V.  Ostrovskaya, Yu. I.  Ostrovskiĭ, Technique and Practice of Spectroscopy (Nauka, Moscow, 1976).
  10. V. A.  Labusov, V. G.  Garanin, I. R.  Shelpakova, “Multichannel analyzers of atomic-emission spectra. Modern status and analytical possibilities,” Z. Anal. Khim. 67, 697 (2012).
  11. D. S.  Rozhdestvenskiĭ, “Coherent and incoherent rays when an image is formed in a microscope,” Zh. Eksp. Teor. Fiz. 10, 305 (1940).
  12. I. M.  Nagibina, V. K.  Prokof’ev, Spectral Devices and the Technique of Spectroscopy (GNTIML, Moscow, 1963).
  13. K. D.  Mielenz, “Spectroscope slit images in partially coherent light,” J. Opt. Soc. Am. A 57, 66 (1967). [CrossRef]
  14. A.  Roseler, “Die Apparatefunktion von Einfachmonochromatoren bei teilkoherenter Beleuchtung des Eintrittspaltes,” Optik 27, 179 (1968).
  15. Yu. A.  Tolmachev, New Spectral Devices. Principles of Operation, S. É.  Frish, ed. (Izd. Leningr. Univ., Leningrad, 1976).
  16. I. V.  Peĭsakhson, “Calculating the instrumental functions of real spectral devices for partially coherent illumination of the slit,” Opt. Zh. 64, No. 6, 87 (1997) [J. Opt. Technol. 64, 580 (1997)].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited