OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 81, Iss. 3 — Mar. 1, 2014
  • pp: 139–145

Image conversion in uncooled mosaic microbolometer detectors for the IR and terahertz regions with a format up to 3072 × 576 or more

M. A. Dem’yanenko, D. G. Esaev, A. G. Klimenko, A. I. Kozlov, I. V. Marchishin, V. N. Ovsyuk, and A. R. Novoselov  »View Author Affiliations


Journal of Optical Technology, Vol. 81, Issue 3, pp. 139-145 (2014)
http://dx.doi.org/10.1364/JOT.81.000139


View Full Text Article

Acrobat PDF (1124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper discusses the process-design principles for creating hyperlarge-format mosaic photodetectors (MPDs), based on the butt-joining process of silicon chips with uncooled small-format microbolometer detector arrays (MBDAs). The basic unit is investigated and optimized for the process operations of laser scribing as part of the high-precision butt-joining process of chips in which the process part of the blind zone between the photosensitive edge elements of adjacent MBDA chips has a total size no greater than 30 μm. The design and layout are synthesized for 384×288-format silicon multiplexers, from which a 3072×576-format MPD fabricated using the butt-joining process developed here can provide better than 99% image-conversion efficiency for IR microbolometers and up to 100% for terahertz-range microbolometers.

© 2014 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(110.3080) Imaging systems : Infrared imaging
(130.5990) Integrated optics : Semiconductors

History
Original Manuscript: July 17, 2013
Published: April 21, 2014

Citation
M. A. Dem’yanenko, D. G. Esaev, A. G. Klimenko, A. I. Kozlov, I. V. Marchishin, V. N. Ovsyuk, and A. R. Novoselov, "Image conversion in uncooled mosaic microbolometer detectors for the IR and terahertz regions with a format up to 3072 × 576 or more," J. Opt. Technol. 81, 139-145 (2014)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-81-3-139


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. M.  Filachev, I. I.  Taubkin, M. A.  Trishenkov, Solid-State Photoelectronics. Physical Principles (Fizmatkniga, Moscow, 2005).
  2. T.  Sparfke, J. W.  Beletic, “Infrared focal plane arrays for space applications,” Opt. Photon. News 19, No. 6, 22 (2008). [CrossRef]
  3. G.  Finger, J. W.  Beletic, “Review of the state of infrared detectors for astronomy in retrospect of the June 2002 Workshop on Scientific Detectors for Astronomy,” Proc. SPIE 4841, 839 (2003). [CrossRef]
  4. R. J.  Dorn, G.  Finger, G.  Huster, H.-U.  Kaeufl, J.-L.  Lizon, L.  Mehrgan, M.  Meyer, J.-F.  Pirard, A.  Silber, J.  Stegmeier, A. F.-M.  Moorwood, “The CRIRES InSb megapixel focal-plane-array detector mosaic,” Proc. SPIE 5499, 510 (2004). [CrossRef]
  5. P. A.  Scowen, R.  Jansen, M.  Beasley, S.  Macenka, S.  Shaklan, D.  Calzetti, S.  Desch, A.  Fullerton, J.  Gallagher, S.  Malhotra, M.  McCaughrean, S.  Nikzad, R.  O’Connell, S.  Oey, D.  Padgett, J.  Rhoads, A.  Roberge, O.  Siegmund, N.  Smith, D.  Stern, J.  Tumlinson, R.  Windhorst, R.  Woodruff, D.  Spergel, K.  Sembach, “Design and implementation of the Wide-field High-Resolution UV/Optical Star Formation Camera for the THEIA Mission,” Bull. Am. Astron. Soc. 41, No. 1, 361 (2009).
  6. A. R.  Novoselov, “Development of high-efficiency mosaic photodetectors based on linear arrays of photosensitive elements,” Avtometriya 46, No. 6, 106 (2010).
  7. >J. P.  Chamonal, E.  Mottin, P.  Audebert, M.  Ravetto, M.  Caes, J. P.  Chatard, “Long linear MWIR and LWIR HgCdTe arrays for high resolution imaging,” Proc. SPIE 4130, 452 (2000). [CrossRef]
  8. Z. Yu.  Gotra, Technology of Microelectronic Devices (Radio i Svyaz’, Moscow, 1991).
  9. H.  Koebner, ed., Industrial Applications of Lasers (Wiley, New York, 1984; Mashinostroenie, Moscow, 1988).
  10. J.  Narayan, F. W.  Young, “Growth of dislocations during laser melting and solidification,” Appl. Phys. Lett. 35, 330 (1979). [CrossRef]
  11. A.  Baldullaeva, A. I.  Vlasenko, É. I.  Kuznetsov, A. V.  Lomovtsev, P. E.  Mozol’, A. B.  Smirnov, “Pulsed laser-stimulated surface acoustic waves in p-CdTe chips,” Fiz. Tekh. Poluprovodn. 35, 960 (2001) [Semiconductors 35, 924 (2001)].
  12. P. M.  Mooney, R. T.  Young, J.  Karins, Y. H.  Lee, J. W.  Corbett, “Defects in laser-damaged silicon observed by DLTS,” Phys. Status Solidi A 48, K31 (1978). [CrossRef]
  13. C. N.  Afonso, M.  Alonso, J. L. H.  Neira, A. D.  Sequeira, M. F.  da Silva, J. C.  Soares, “Pulsed laser-induced effects on the HgCdTe surface,” J. Vac. Sci. Technol. A 7, 3256 (1989). [CrossRef]
  14. S. M.  Sze, Physics of Semiconductor Devices (Wiley, New York, 1969; Mir, Moscow, 1973).
  15. M. H.  Hong, Y. F.  Lu, “Optical detection of laser plasma interaction during laser ablation,” Proc. SPIE 3618, 61 (1999). [CrossRef]
  16. A. R.  Novoselov, A. G.  Klimenko, “Processes in semiconductor materials after laser cutting,” Proc. SPIE 4426, 150 (2002). [CrossRef]
  17. A. I.  Kozlov, “Analysis of the construction principles of circuits of silicon multiplexers for multielement IR photodetectors,” Avtometriya 46, 118 (2010).
  18. S.  Muroga, VLSI Systems Design: When and How to Design Very Large Scale Integrated Circuits, book 1 (Wiley, New York, 1982; Mir, Moscow, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited