OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology

| SIMULTANEOUS RUSSIAN-ENGLISH PUBLICATION

  • Vol. 81, Iss. 5 — May. 1, 2014
  • pp: 233–249

The effect of an ultrashort laser pulse on metals: Two-temperature relaxation, foaming of the melt, and freezing of the disintegrating nanofoam

N. A. Inogamov, Yu. V. Petrov, V. A. Khokhlov, S. I. Anisimov, V. V. Zhakhovskiĭ, S. I. Ashitkov, P. S. Komarov, M. B. Agranat, V. E. Fortov, K. P. Migdal, D. K. Il’nitskiĭ, and Yu. N. Émirov  »View Author Affiliations


Journal of Optical Technology, Vol. 81, Issue 5, pp. 233-249 (2014)
http://dx.doi.org/10.1364/JOT.81.000233


View Full Text Article

Acrobat PDF (1820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrashort heating of substances converts them into the two-temperature (2T) state with hot electrons. The thickness of the heated layer rapidly increases into the depth of the metal in this state (by comparison with the thickness of the skin layer), and the pressure in the heated layer rises sharply because of the high rate of heating (inertial confinement). A technique has been developed for taking into account 2T, thermomechanical, and multidimensional (target-structuring) phenomena. It is based on quantum-mechanical computations by means of the density functional, the solution of kinetic equations, and 2T hydrodynamic and molecular-dynamic calculations. The mechanism for forming superelastic shock waves and for constructing complex surface structures has been studied. The corresponding results have great significance for developing promising nanometallurgical technologies associated with laser pinning, for increasing corrosion resistance, and for altering optical surface characteristics.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.6810) Lasers and laser optics : Thermal effects
(160.3900) Materials : Metals
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5390) Ultrafast optics : Picosecond phenomena

History
Original Manuscript: December 9, 2013
Published: May 27, 2014

Citation
N. A. Inogamov, Yu. V. Petrov, V. A. Khokhlov, S. I. Anisimov, V. V. Zhakhovskiĭ, S. I. Ashitkov, P. S. Komarov, M. B. Agranat, V. E. Fortov, K. P. Migdal, D. K. Il’nitskiĭ, and Yu. N. Émirov, "The effect of an ultrashort laser pulse on metals: Two-temperature relaxation, foaming of the melt, and freezing of the disintegrating nanofoam," J. Opt. Technol. 81, 233-249 (2014)
http://www.opticsinfobase.org/jot/abstract.cfm?URI=jot-81-5-233


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. I.  Anisimov, B. L.  Kapeliovich, T. L.  Perel’man, “Electron emission from the surface of metals under the action of ultrashort laser pulses,” Zh. Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].
  2. V. P.  Veĭko, M. N.  Libenson, G. G.  Chervyakov, E. B.  Yakovlev, The Interaction of Laser Radiation with Matter (Fizmatlit, Moscow, 2008).
  3. N.  Inogamov, Y.  Petrov, V.  Zhakhovsky, V.  Khokhlov, B.  Demaske, S.  Ashitkov, K.  Khishchenko, K.  Migdal, M.  Agranat, S.  Anisimov, V.  Fortov, I.  Oleynik, “Two-temperature thermodynamic and kinetic properties of transition metals irradiated by femtosecond lasers,” AIP Conf. Proc. 1464, 593 (2012). [CrossRef]
  4. S. I.  Anisimov, V. V.  Zhakhovskiĭ, N. A.  Inogamov, K.  Nishihara, Yu. V.  Petrov, V. A.  Khokhlov, “Ablated matter expansion and crater formation under the action of ultrashort laser pulse,” Zh. Eksp. Teor. Fiz. 130, 212 (2006) [JETP 103, 183 (2006)].
  5. N. A.  Inogamov, Yu. V.  Petrov, “Thermal conductivity of metals with hot electrons,” Zh. Eksp. Teor. Fiz. 137, 505 (2010) [JETP 110, 446 (2010)].
  6. Yu. V.  Petrov, N. A.  Inogamov, K. P.  Migdal, “Thermal conductivity and the electron–ion heat transfer coefficient in condensed media with a strongly excited electron subsystem,” Pis’ma Zh. Eksp. Teor. Fiz. 97, 24 (2013) [JETP Lett. 97, 20 (2013)].
  7. Yu. V.  Petrov, N. A.  Inogamov, “Elimination of the Mott interband s-d enhancement of the electrical resistance of nickel and platinum owing to the excitation of electrons by femtosecond laser pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 98, 316 (2013) [JETP Lett. 98, 278 (2013)].
  8. Y. V.  Petrov, “Energy exchange between the lattice and electrons in a metal under femtosecond laser irradiation,” Laser Part. Beams 23, 283 (2005). [CrossRef]
  9. N.  Inogamov, S.  Anisimov, V.  Zhakhovsky, A.  Faenov, Y.  Petrov, V.  Khokhlov, V.  Fortov, M.  Agranat, S.  Ashitkov, P.  Komarov, I.  Skobelev, Y.  Kato, T.  Pikuz, V.  Shepelev, Y.  Fukuda, M.  Tanaka, M.  Kishimoto, M.  Ishino, M.  Nishikino, M.  Kando, T.  Kawachi, M.  Nagasono, H.  Ohashi, M.  Yabashi, K.  Tono, Y.  Senda, T.  Togashi, T.  Ishikawa, “Ablation by short optical and x-ray laser pulses,” Proc. SPIE 7996, 79960T (2011). [CrossRef]
  10. N.  Inogamov, A.  Faenov, V.  Zhakhovsky, T.  Pikuz, I.  Skobelev, Y.  Petrov, V.  Khokhlov, V.  Shepelev, S.  Anisimov, V.  Fortov, Y.  Fukuda, M.  Kando, T.  Kawachi, M.  Nagasono, H.  Ohashi, V.  Yabashi, K.  Tono, Y.  Senda, T.  Togashi, T.  Ishikawa, “Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse,” Contrib. Plasma Phys. 51, 419 (2011). [CrossRef]
  11. Z.  Lin, L. V.  Zhigilei, V.  Celli, “Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008). [CrossRef]
  12. B.  Rethfeld, A.  Kaiser, M.  Vicanek, G.  Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002). [CrossRef]
  13. S.  Amoruso, R.  Bruzzese, X.  Wang, P.  Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D 40, 331 (2007).
  14. A.  Kanavin, I.  Smetanin, V.  Isakov, Y.  Afanasiev, B.  Chichkov, B.  Wellegehausen, S.  Nolte, C.  Momma, A.  Tunnermann, “Heat transport in metals irradiated by ultrashort laser pulses,” Phys. Rev. B 57, 14698 (1998). [CrossRef]
  15. P.  Loboda, N.  Smirnov, A.  Shadrin, N.  Karlykhanov, “Simulation of absorption of femtosecond laser pulses in solid-density copper,” High Energy Density Phys. 7, 361 (2011). [CrossRef]
  16. M. B.  Agranat, S. I.  Anisimov, S. I.  Ashitkov, V. V.  Zhakhovskii, N. A.  Inogamov, K.  Nishihara, Y. V.  Petrov, V. E.  Fortov, V. A.  Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci. 253, 6276 (2007). [CrossRef]
  17. M. B.  Agranat, S. I.  Anisimov, S. I.  Ashitkov, V. V.  Zhakhovskii, N. A.  Inogamov, K.  Nishihara, Y. V.  Petrov, “Nanospallation induced by a femtosecond laser pulse,” Proc. SPIE 6720, 672002 (2007). [CrossRef]
  18. N. A.  Inogamov, V. V.  Zhakhovskiĭ, S. I.  Ashitkov, Yu. V.  Petrov, M. B.  Agranat, S. I.  Anisimov, K.  Nishihara, V. E.  Fortov, “Nanospallation induced by an ultrashort laser pulse,” Zh. Eksp. Teor. Fiz. 134, 5 (2008) [JETP 107, 1 (2008)].
  19. N. A.  Inogamov, S. I.  Anisimov, Y. V.  Petrov, V. A.  Khokhlov, V. V.  Zhakhovskii, K.  Nishihara, M. B.  Agranat, S. I.  Ashitkov, P. S.  Komarov, “Theoretical and experimental study of hydrodynamics of metal target irradiated by ultrashort laser pulse,” Proc. SPIE 7005, 70052 (2008). [CrossRef]
  20. Y. V.  Petrov, V. V.  Zhakhovskii, N. A.  Inogamov, S. I.  Ashitkov, V. A.  Khokhlov, A. K.  Upadhyay, M. B.  Agranat, S. I.  Anisimov, K.  Nishihara, B.  Rethfeld, H. M.  Urbassek, “Equation of state of matter irradiated by short laser pulse and geometry of spalled cupola,” Proc. SPIE 7005, 70051 (2008).
  21. S.  Anisimov, N.  Inogamov, Y.  Petrov, V.  Khokhlov, V.  Zhakhovskii, K.  Nishihara, M.  Agranat, S.  Ashitkov, P.  Komarov, “Thresholds for frontal ablation and backside spallation of thin foil irradiated by femtosecond laser pulse,” Appl. Phys. A 92, 797 (2008). [CrossRef]
  22. L. V.  Zhigilei, Z.  Lin, D. S.  Ivanov, “Atomistic modeling of short-pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892 (2009). [CrossRef]
  23. V.  Zhakhovskii, N.  Inogamov, Y.  Petrov, S.  Ashitkov, K.  Nishihara, “Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials,” Appl. Surf. Sci. 255, 9592 (2009). [CrossRef]
  24. E. T.  Karim, Z.  Lin, L. V.  Zhigile, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc. 1464, 280 (2012). [CrossRef]
  25. M. B.  Agranat, S. I.  Anisimov, S. I.  Ashitkov, V. V.  Zhakhovskiĭ, N. A.  Inogamov, P. S.  Komarov, A. V.  Ovchinnikov, V. E.  Fortov, V. A.  Khokhlov, V. V.  Shepelev, “Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 91, 517 (2010) [JETP Lett. 91, 471 (2010)].
  26. S. I.  Ashitkov, M. B.  Agranat, G. I.  Kanel’, P. S.  Komarov, V. E.  Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 92, 516 (2010) [JETP Lett. 92, 516 (2010)].
  27. S.  Ashitkov, N.  Inogamov, P.  Komarov, V.  Zhakhovsky, I.  Oleynik, M.  Agranat, G.  Kanel, V.  Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc. 1464, 120 (2012). [CrossRef]
  28. N.  Inogamov, A.  Faenov, V.  Khokhlov, V.  Zhakhovskii, Y.  Petrov, I.  Skobelev, K.  Nishihara, Y.  Kato, M.  Tanaka, T.  Pikuz, M.  Kishimoto, M.  Ishino, M.  Nishikino, Y.  Fukuda, S.  Bulanov, T.  Kawachi, S.  Anisimov, V.  Fortov, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455 (2009). [CrossRef]
  29. B.  Demaske, V.  Zhakhovsky, N.  Inogamov, I.  Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010). [CrossRef]
  30. V.  Zhakhovsky, B.  Demaske, N.  Inogamov, V.  Khokhlov, S.  Ashitkov, M.  Agranat, I.  Oleynik, “Super-elastic response of metals to laser-induced shock waves,” AIP Conf. Proc. 1464, 102 (2012). [CrossRef]
  31. B.  Demaske, V.  Zhakhovsky, N.  Inogamov, I.  Oleynik, “Molecular dynamics simulations of femtosecond laser ablation and spallation of gold,” AIP Conf. Proc. 1278, 121 (2010). [CrossRef]
  32. B.  Demaske, V.  Zhakhovsky, N.  Inogamov, C.  White, I.  Oleynik, “MD simulations of laser-induced ultrashort shock waves in nickel,” AIP Conf. Proc. 1426, 1163 (2012). [CrossRef]
  33. B. J.  Demaske, V. V.  Zhakhovsky, N. A.  Inogamov, I. I.  Oleynik, “Ultrashort shock waves in nickel induced by femtosecond laser pulses,” Phys. Rev. B 87, 054109 (2013). [CrossRef]
  34. A. V.  Bushman, G. I.  Kanel’, A. L.  Ni, V. E.  Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993).
  35. G. I.  Kanel, S. V.  Razorenov, V. E.  Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, 2004).
  36. T.  Antoun, L.  Seaman, D. R.  Curran, G. I.  Kanel, S. V.  Razorenov, A. V.  Utkin, Spall Fracture (Shock Wave and High Pressure Phenomena) (Springer, 2003).
  37. G. I.  Kanel’, V. E.  Fortov, S. V.  Razorenov, “Shock waves in condensed-state physics,” Usp. Fiz. Nauk 177, 809 (2007) [Phys.–Usp. 50, 771 (2007)]. [CrossRef]
  38. O. V.  Misochko, “Nonclassical states of lattice excitations: squeezed and entangled phonons,” Usp. Fiz. Nauk 183, 917 (2013) [Phys.–Usp. 56, 868 (2013)]. [CrossRef]
  39. E. S.  Zijlstra, A.  Kalitsov, T.  Zier, M. E.  Garcia, “Squeezed thermal phonons precurse nonthermal melting of silicon as a function of fluence,” Phys. Rev. X 3, 011005 (2013). [CrossRef]
  40. E. G.  Gamaly, A. V.  Rode, “Ultrafast electronic relaxation in superheated bismuth,” New J. Phys. 15, 013035 (2013). [CrossRef]
  41. S.  Khakshouri, D.  Alfe, D. M.  Duffy, “Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation,” Phys. Rev. B 78, 224304 (2008). [CrossRef]
  42. G. V.  Sin’ko, N. A.  Smirnov, A. A.  Ovechkin, P. R.  Levashov, K. V.  Khishchenko, “Thermodynamic functions of the heated electron subsystem in the field of cold nuclei,” High Energy Density Phys. 9, 309 (2013). [CrossRef]
  43. G.  Kresse, J.  Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15 (1996).
  44. G.  Norman, I.  Saitov, V.  Stegailov, P.  Zhilyaev, “Atomistic modeling and simulation of warm dense matter. Conductivity and reflectivity,” Contrib. Plasma Phys. 53, 300 (2013). [CrossRef]
  45. D. V.  Knyazev, P. R.  Levashov, “Ab initio calculation of transport and optical properties of aluminum: Influence of simulation parameters,” Comput. Mater. Sci. 79, 817 (2013).
  46. R.  Evans, A. D.  Badger, F.  Fallies, M.  Mahdieh, T. A.  Hall, P.  Audebert, J.-P.  Geindre, J.-C.  Gauthier, A.  Mysyrowicz, G.  Grillon, A.  Antonetti, “Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum,” Phys. Rev. Lett. 77, 3359 (1996). [CrossRef]
  47. K. T.  Gahagan, D. S.  Moore, D. J.  Funk, R. L.  Rabie, S. J.  Buelow, J. W.  Nicholson, “Measurement of shock wave rise times in metal thin films,” Phys. Rev. Lett. 85, 3205 (2000). [CrossRef]
  48. D. J.  Funk, D. S.  Moore, K. T.  Gahagan, S. J.  Buelow, J. H.  Reho, G. L.  Fisher, R. L.  Rabie, “Ultrafast measurement of the optical properties of aluminum during shock-wave breakout,” Phys. Rev. B 64, 115114 (2001). [CrossRef]
  49. S.  Ashitkov, P.  Komarov, M.  Agranat, G.  Kanel, V.  Fortov, “Measurements of a strength of metals in a picosecond time range,” Bull. Am. Phys. Soc. 58, No. 7, 187 (2013).
  50. V. H.  Whitley, S. D.  McGrane, D. E.  Eakins, C. A.  Bolme, D. S.  Moore, J. F.  Bingert, “The elastic-plastic response of Al films to ultrafast laser-generated shocks,” J. Appl. Phys. 109, 013505 (2011). [CrossRef]
  51. J. C.  Crowhurst, M. R.  Armstrong, K. B.  Knight, J. M.  Zaug, E. M.  Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 144302 (2011). [CrossRef]
  52. V. V.  Zhakhovskiĭ, N. A.  Inogamov, “Elastic–plastic phenomena in ultrashort shock waves,” Pis’ma Zh. Eksp. Teor. Fiz. 92, 574 (2010) [JETP 92, 521 (2010)].
  53. V. V.  Zhakhovsky, M. M.  Budzevich, N. A.  Inogamov, I. I.  Oleynik, C. T.  White, “Two-zone elastic-plastic single shock waves in solids,” Phys. Rev. Lett. 107, 135502 (2011). [CrossRef]
  54. N. A.  Inogamov, V. V.  Zhakhovskiĭ, V. A.  Khokhlov, V. V.  Shepelev, “Superelasticity and the propagation of shock waves in crystals,” Pis’ma Zh. Eksp. Teor. Fiz. 93, 245 (2011) [JETP Lett. 93, 226 (2011)].
  55. L.  Huang, Y.  Yang, Y.  Wang, Z.  Zheng, W.  Su, “Measurement of transit time for femtosecond-laser-driven shock wave through aluminium films by ultrafast microscopy,” J. Phys. D 42, 045502 (2009).
  56. B.  Demaske, V.  Zhakhovsky, N.  Inogamov, C.  White, I.  Oleynik, “Split and two-zone elastic–plastic shock waves in nickel: a molecular dynamics study,” Bull. Am. Phys. Soc. 58, No. 7, 151 (2013).
  57. N.  Inogamov, S.  Ashitkov, V.  Zhakhovsky, V.  Shepelev, V.  Khokhlov, P.  Komarov, M.  Agranat, S.  Anisimov, V.  Fortov, “Acoustic probing of two-temperature relaxation initiated by action of ultrashort laser pulse,” Appl. Phys. A 101, 1 (2010). [CrossRef]
  58. N.  Inogamov, V.  Zhakhovsky, S.  Ashitkov, V.  Khokhlov, V.  Shepelev, P.  Komarov, A.  Ovchinnikov, D.  Sitnikov, Y.  Petrov, M.  Agranat, S.  Anisimov, V.  Fortov, “Laser acoustic probing of two-temperature zone created by femtosecond pulse,” Contrib. Plasma Phys. 51, 367 (2011). [CrossRef]
  59. S. I.  Ashitkov, N. A.  Inogamov, V. V.  Zhakhovskiĭ, Yu. N.  Émirov, M. B.  Agranat, I. I.  Oleĭnik, S. I.  Anisimov, V. E.  Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” Pis’ma Zh. Eksp. Teor. Fiz. 95, 192 (2012) [JETP Lett. 95, 176 (2012)].
  60. V. V.  Zhakhovskii, N. A.  Inogamov, K.  Nishihara, “Laser ablation and spallation of crystalline aluminum simulated by molecular dynamics,” J. Phys.: Conf. Ser. 112, 042080 (2008). [CrossRef]
  61. V. V.  Zhakhovskiĭ, N. A.  Inogamov, K.  Nishihara, “New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse,” Pis’ma Zh. Eksp. Teor. Fiz. 87, 491 (2008) [JETP Lett. 87, 423 (2008)].
  62. V.  Zhakhovskii, K.  Nishihara, Y.  Fukuda, S.  Shimojo, “A new dynamical domain decomposition method for parallel molecular dynamics simulation on grid,” arXiv:DC/0405086v1 (24May2004).
  63. A.  Kuznetsov, J.  Koch, B.  Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221 (2009). [CrossRef]
  64. D.  Ivanov, A.  Kuznetsov, V.  Lipp, B.  Rethfeld, B.  Chichkov, M.  Garcia, W.  Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys. A 111, 675687 (2013).
  65. Y.  Nakata, K.  Tsuchida, N.  Miyanaga, T.  Okada, “Nano-sized and periodic structures generated by interfering femtosecond laser,” J. Laser Micro/Nanoeng. 3, No. 2, 63 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited