OSA's Digital Library

Journal of Optical Technology

Journal of Optical Technology


  • Vol. 81, Iss. 5 — May. 1, 2014
  • pp: 294–297

Study of the optoacoustic response to the laser ablation of solids by the radiation of a fiber laser under a thin layer of liquid

V. P. Veĭko and A. A. Samokhvalov  »View Author Affiliations

Journal of Optical Technology, Vol. 81, Issue 5, pp. 294-297 (2014)

View Full Text Article

Acrobat PDF (616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper discusses the characteristics of the optoacoustic response to the laser ablation of a steel target under a thin layer of liquid by the radiation of a pulsed fiber laser in the range of power densities 107–2×108   W/cm2. The dependence of the intensity of the principal peak (5.6 kHz) of the Fourier spectrum of the optoacoustic signal on the power density of the laser radiation is determined. It is established that the character of the growth of the acoustic signal amplitude substantially depends on the properties and conditions of the appearance of a near-surface plasma.

© 2014 Optical Society of America

OCIS Codes
(350.3390) Other areas of optics : Laser materials processing
(110.5125) Imaging systems : Photoacoustics

Original Manuscript: February 21, 2014
Published: May 30, 2014

V. P. Veĭko and A. A. Samokhvalov, "Study of the optoacoustic response to the laser ablation of solids by the radiation of a fiber laser under a thin layer of liquid," J. Opt. Technol. 81, 294-297 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F.  Bozon-Verduraz, R.  Brayner, V. V.  Voronov, N. A.  Kirichenko, A. V.  Simakin, G. A.  Shafeev, “Production of nanoparticles by laser-induced ablation of metals in liquids,” Kvant. Elektron. 33, 714 (2003) [Quantum Electron. 33, 714 (2003)].
  2. P.  Serra, J. M.  Fernández-Pradas, M.  Colina, M.  Duocastella, J.  Domínguez, J. L.  Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 3, 236 (2006).
  3. P.  Schwaller, S.  Zehnder, U.  von Arx, B.  Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064  nm,” Phys. Procedia 12, 188 (2011).
  4. K. A.  Naugol’nykh, “Converting an impact wave into an acoustic wave,” Akust. Zh. 18, 579 (1972).
  5. Y. F.  Lu, M. H.  Hong, S. J.  Chua, B. S.  Teo, T. S.  Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys. 79, 2186 (1996). [CrossRef]
  6. J. M.  Lee, K. G.  Watkins, “In-process monitoring techniques for laser cleaning,” Opt. Lasers Eng. 34, 429 (2000).
  7. M.  Jankowska, G.  Sliwinski, “Acoustic monitoring for the laser cleaning of sandstone,” J. Cultural Heritage 4, 65 (2003).
  8. S.  Conesa, S.  Palanco, J. J.  Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochimica Acta Part B 59, 1395 (2004).
  9. N. N.  Bochkarev, A. M.  Kabanov, V. A.  Pogodaev, “Optoacoustic channel for the propagation of powerful pulsed laser radiation in the atmosphere,” Opt. Atm. Okeana 16, 816 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited