OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 23 — Nov. 18, 2002
  • pp: 1334–1341

Hybrid integration of conventional waveguide and photonic crystal structures

Gregory P. Nordin, Seunghyun Kim, Jingbo Cai, and Jianhua Jiang  »View Author Affiliations

Optics Express, Vol. 10, Issue 23, pp. 1334-1341 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1789 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose the hybrid integration of conventional index-guided waveguides (CWGs) and photonic crystal (PhC) regions of very limited spatial extent as a promising path toward large-scale planar lightwave circuit (PLC) integration. In CWG/PhC structures the PhC regions do not perform the function of waveguiding, but instead augment the CWGs to permit a drastic reduction in the size of photonic components. For single mode waveguides with a refractive index contrast of only 2.3%, simulation results show a 90 degree bend with 98.7% efficiency, a compact beamsplitter with 99.4% total efficiency, and a planar Mach-Zender interferometer (MZI) with 97.8% efficiency. The MZI occupies an area of only 18 μm × 18 μm.

© 2002 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.1750) Integrated optics : Components
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: October 14, 2002
Revised Manuscript: November 4, 2002
Published: November 18, 2002

Gregory Nordin, Seunghyun Kim, Jingbo Cai, and Jianhua Jiang, "Hybrid integration of conventional waveguide and photonic crystal structures," Opt. Express 10, 1334-1341 (2002)

Sort:  Journal  |  Reset  


  1. See for example the special issue on photonic crystals in IEEE J. Quant. Elect. 38 (2002).
  2. H. Benisty, C.Weisbuch, D. Labilloy,M. Rattier, C. J.M. Smith, T. F. Krauss, R.M. D. L. Rue, R. Houdre, U. Oesterle, C. Jouanin, D. Cassagne, �??Optical and Confinement Properties of Two-Dimensional Photonic Crystals,�?? J. Lightwave Technol. 17 2063 (1999). [CrossRef]
  3. S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, �??Linear waveguides in photonic-crystal slabs,�?? Phys. Rev. B 62 8212 (2000). [CrossRef]
  4. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, �??Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,�?? IEEE J. Quantum Electron. 38, 743 (2002). [CrossRef]
  5. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, K. Inoue, �??AlGaAs-Based Two-Dimensional Photonic Crystal Slab With Defect Waveguides for Planar Lightwave Circuit Applications,�?? IEEE J. Quantum Electron. 38, 760 (2002). [CrossRef]
  6. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, �??Properties of the Slab Modes in Photonic Crystal Optical Waveguides,�?? J. Lightwave Technol. 18, 1554 (2000). [CrossRef]
  7. M. Loncar, T. Doll, J. Vuckovic, A. Scherer, �??Design and fabrication of silicon photonic crystal optical waveguides,�?? J. Lightwave Technol. 18, 1402 (2000). [CrossRef]
  8. A. Chutinan, S. Noda, �??Waveguides and Waveguide Bends in Two-Dimensional Photonic Crystal Slabs,�?? Phys. Rev. B Condens. Matter 62, 4488 (2000). [CrossRef]
  9. S. Y. Lin, E. Chow, S. G. Johnson, J. D. Joannopoulos, �??Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5- m wavelength,�?? Opt. Lett. 25, 1297 (2000). [CrossRef]
  10. A. Talneau, L. L. Gouezigou, N. Bouadma, �??Quantitative measurement of low propagation losses at 1.55 m on planar photonic crystal waveguides,�?? Opt. Lett. 26, 1259 (2001). [CrossRef]
  11. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, �??Structural Tuning of Guiding Modes of Line-Defect Waveguides of Silicon-on-Insulator Photonic Crystal Slabs,�?? IEEE J. Quantum Electron. 38, 736 (2002). [CrossRef]
  12. A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, �??Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,�?? Appl. Phys. Lett. 80, 547 (2002). [CrossRef]
  13. H. Benisty, S. Olivier, C. Weisbuch, M. Agio, M. Kafesaki, C. M. Soukoulis, M. Qiu, M. Swillo, A. Karlsson, B. Jaskorzynska, A. Talneau, J. Moosburger, M. Kamp, A. Forchel, R. Ferrini, R. Houdre, U. Oesterle, �??Models and Measurements for the Transmission of Submicron- Width Waveguide Bends Defined in Two-Dimensional Photonic Crystals,�?? IEEE J. Quantum Electron. 38, 770 (2002). [CrossRef]
  14. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, U. Oesterle., �??Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,�?? J. Lightwave Technol. 20, 1198 (2002). [CrossRef]
  15. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, K. Inoue, �??Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,�?? Opt. Lett. 27, 388 (2002). [CrossRef]
  16. S. Boscolo, M. Midrio, T. F. Krauss, �??Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,�?? Opt. Lett. 27, 1001 (2002). [CrossRef]
  17. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O�??Brien, P. D. Dapkus, �??Lithographic Tuning of a Two-Dimensional Photonic Crystal Laser Array,�?? IEEE Photon. Technol. Lett. 12, 1126 (2000). [CrossRef]
  18. S. Y. Lin, E. Chow, S. G. Johnson, J. D. Joannopoulos, �??Direct measurement of the quality factor in a twodimensional photonic-crystal microcavity,�?? Opt. Lett. 26, 1903 (2001). [CrossRef]
  19. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, �??Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,�?? Appl. Phys. Lett. 76, 532 (2000). [CrossRef]
  20. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, D. D. Zutter, �??Out-of-plane Scattering in Photonic Crystal Slabs,�?? IEEE Photon. Technol. Lett. 13, 565 (2001). [CrossRef]
  21. P. Lalanne, H. Benisty, �??Out-of-plane losses of two-dimensional photonic crystals waveguides: Electromagnetic analysis,�?? J. Appl. Phys. 89, 1512 (2001). [CrossRef]
  22. P. Lalanne, �??Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone,�?? IEEE J. Quantum Electron. 38, 800 (2002). [CrossRef]
  23. M. Tokushima, H. Yamada, �??Light Propagation in a Photonic-Crystal-Slab Line-Defect Waveguide,�?? IEEE J. Quantum Electron. 38, 753 (2002). [CrossRef]
  24. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, �??High Transmission through Sharp Bends in Photonic Crystal Waveguides,�?? Phys. Rev. Lett. 77, 3787 (1996). [CrossRef] [PubMed]
  25. A. Sharkawy, S. Shi, D. W. Prather, �??Multichannel wavelength division multiplexing with photonic crystals,�?? Appl. Opt. 40, 2247 (2001). [CrossRef]
  26. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, U. Oesterle, �??Miniband transmission in a photonic crystal coupled-resonator optical waveguide,�?? Opt. Lett. 26, 1019 (2001). [CrossRef]
  27. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass.,1995).
  28. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  29. P. S. J. Russell, T. A. Birks, F. D. L. Lucas, �??Photonic bloch waves and photonic band gaps,�?? in Confined Electrons and Photonics: New Physics and Applications, E. Burstein, C. Weisbuch, eds. (Plenum Press, New York, 1995). [CrossRef]
  30. M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62, 10,696 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited