OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 6 — Mar. 24, 2003
  • pp: 579–593

Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals

Kartik Srinivasan and Oskar Painter  »View Author Affiliations

Optics Express, Vol. 11, Issue 6, pp. 579-593 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Building upon the results of recent work [1], we use momentum space design rules to investigate high quality factor (Q) optical cavities in standard and compressed hexagonal lattice photonic crystal (PC) slab waveguides. Beginning with the standard hexagonal lattice, the results of a symmetry analysis are used to determine a cavity geometry that produces a mode whose symmetry immediately leads to a reduction in vertical radiation loss from the PC slab. The Q is improved further by a tailoring of the defect geometry in Fourier space so as to limit coupling between the dominant Fourier components of the defect mode and those momentum components that radiate. Numerical investigations using the finite-difference time-domain (FDTD) method show significant improvement using these methods, with total Q values exceeding 105. We also consider defect cavities in a compressed hexagonal lattice, where the lattice compression is used to modify the in-plane bandstructure of the PC lattice, creating new (frequency) degeneracies and modifying the dominant Fourier components found in the defect modes. High Q cavities in this new lattice geometry are designed using the momentum space design techniques outlined above. FDTD simulations of these structures yield Q values in excess of 105 with mode volumes of approximately 0.35 cubic half-wavelengths in vacuum.

© 2003 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators

ToC Category:
Research Papers

Original Manuscript: January 6, 2003
Revised Manuscript: March 5, 2003
Published: March 24, 2003

Kartik Srinivasan and Oskar Painter, "Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals," Opt. Express 11, 579-593 (2003)

Sort:  Journal  |  Reset  


  1. K. Srinivasan and O. Painter, �??Momentum space design of high-Q photonic crystal optical cavities,�?? Opt. Express 10, 670�??684 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a> [CrossRef] [PubMed]
  2. D. M. Atkin, P. S. J. Russell, T. A. Birks, and P. J. Roberts, �??Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,�?? J. Mod. Opt. 43, 1035�??1053 (1996). [CrossRef]
  3. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B 60, 5751�??5758 (1999). [CrossRef]
  4. S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608�??610 (2000). [CrossRef] [PubMed]
  5. C. Smith, R. De la Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, U. Oesterle, and R. Houdre, �??Coupled guide and cavity in a two-dimensional photonic crystal,�?? Appl. Phys. Lett. 78, 1487�??1489 (2001). [CrossRef]
  6. O. Painter, K. Srinivasan, J. D. O�??Brien, A. Scherer, and P. D. Dapkus, �??Tailoring of the resonant mode properties of optical nanocavities in two-dimensional photonic crystal slab waveguides,�?? J. Opt. A 3, S161�??S170 (2001). [CrossRef]
  7. O. J. Painter, A. Husain, A. Scherer, J. D. O�??Brien, I. Kim, and P. D. Dapkus, �??Room Temperature Photonic Crystal Defect Lasers at Near-Infrared Wavelengths in InGaAsP,�?? J. Lightwave Tech. 17, 2082 2088 (1999). [CrossRef]
  8. J. Vu¡ckovic, M. Lon¡car, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65 (2002).
  9. T. Yoshie, J. Vu¡ckovic, A. Scherer, H. Chen, and D. Deppe, �??High quality two-dimensional photonic crystal slab cavities,�?? Appl. Phys. Lett. 79, 4289�??4291 (2001). [CrossRef]
  10. O. Painter, J. Vu¡ckovi´c, and A. Scherer, �??Defect Modes of a Two-Dimensional Photonic Crystal in an Optically Thin Dielectric Slab,�?? J. Opt. Soc. Am. B 16, 275�??285 (1999). [CrossRef]
  11. H. Park, J. Hwang, J. Huh, H. Ryu, Y. Lee, and J. Hwang, �??Nondegenerate monopole-mode two-dimensional photonic band gap laser,�?? Appl. Phys. Lett. 79, 3032�??3034 (2001). [CrossRef]
  12. J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, �??Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,�?? J. Appl. Phys. 92, 654�??659 (2002). [CrossRef]
  13. H.-Y. Ryu, S.-H. Kim, H.-G. Park, J.-K. Hwang, Y.-H. Lee, and J.-S. Kim, �??Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,�?? Appl. Phys. Lett. 80, 3883�??3885 (2002). [CrossRef]
  14. J. Vu¡ckovic, M. Lon¡car, H. Mabuchi, and A. Scherer, �??Optimization of the Q factor in Photonic Crystal Microcavities,�?? IEEE J. Quantum Electron. 38, 850�??856 (2002). [CrossRef]
  15. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, �??Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,�?? Appl. Phys. Lett. 78, 3388�??3390 (2001). [CrossRef]
  16. H. Benisty, D. Labilloy, C. Weisbuch, C. Smith, T. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, �??Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,�?? Appl. Phys. Lett. 76, 532�??534 (2000). [CrossRef]
  17. O. Painter and K. Srinivasan, �??Localized defect states in two-dimensional photonic crystal slab waveguides: a simple model based upon symmetry analysis,�?? submitted to Phys. Rev. B (2002).
  18. O. Painter, K. Srinivasan, and P. E. Barclay, �??A Wannier-like Equation for the Resonant Optical Modes of Locally Perturbed Photonic Crystals,�?? submitted to Phys. Rev. B, December 2002.
  19. M. Tinkham, Group Theory and Quantum Mechanics, International Series in Pure and Applied Physics (McGaw-Hill, Inc., New York, NY, 1964).
  20. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, �??Donor and acceptor modes in photonic band-structure,�?? Phys. Rev. Lett. 67, 3380�??3383 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited