OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 15 — Jul. 26, 2004
  • pp: 3436–3442

Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers

Hyang Kyun Kim, Michel J. F. Digonnet, Gordon S. Kino, Jonghwa Shin, and Shanhui Fan  »View Author Affiliations

Optics Express, Vol. 12, Issue 15, pp. 3436-3442 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show through computer simulations that the thin silica ring that surrounds the air core of a photonic-bandgap fiber introduces surface modes. The intensity profile and dispersion of these modes indicate that they are the modes of the waveguide formed by the ring surrounded by air on one side and the photonic crystal cladding on the other. The ring also induces small perturbations of the fundamental core mode. Coupling to those surface modes, which have propagation constants close to that of the core mode, are likely to induce substantial loss to the core mode. By reducing the thickness of the ring and/or by suitably selecting its radius the propagation constants of the surface modes can be moved farther from that of the core mode and the loss reduced.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Research Papers

Original Manuscript: June 10, 2004
Revised Manuscript: July 7, 2004
Published: July 26, 2004

Hyang Kyun Kim, Michel Digonnet, Gordon Kino, Jonghwa Shin, and Shanhui Fan, "Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Opt. Express 12, 3436-3442 (2004)

Sort:  Journal  |  Reset  


  1. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, Peihong Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. of SPIE 5000, 161-174 (2003). [CrossRef]
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, �??Low-loss hollow-core silica/air photonic band-gap fibre,�?? Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  3. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. County, M. Lawman, M. Mason, S. Coupland, R. Flea, and H. Sabert, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? Conf. On Optical Fiber Communications, (LA, USA, 2004), paper PDP24.
  4. T. P. Hansen, J. Broeng, C. Jakobson, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, �??Spectral Properties, Macrobending loss, and practical handling,�?? IEEE J. Lightwave Technol. .22, 11-15 (2004). [CrossRef]
  5. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. of Quant. Electron. 40, 551-556 (2004). [CrossRef]
  6. M. J. F. Digonnet, H. K. Kim, J. Shin, S. Fan, and G. S. Kino, "Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers," Opt. Express 12, 1864-1872 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1864">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1864</a> [CrossRef] [PubMed]
  7. J. A. West, C. M. Smith, N. F. Borrelli, D. C.. Allen, and K. W. Koch, �??Surface modes in air-core photonic band-gap fibers,�?? Opt. Express 12, 1485-1496 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485</a> [CrossRef] [PubMed]
  8. F. Ramos-Mendieta and P. Halevi, �??Surface electromagnetic waves in two-dimensional photonic crystals: effect of position of the surface plane,�?? Phy. Rev. B 59, p.15112 (1999). [CrossRef]
  9. Crystal Fibre�?? Air-core fiber AIR-10-1550, <a href= "http://www.crystal-fibre.com">http://www.crystal-fibre.com</a>
  10. Blaze Photonics' air-core fiber HC=1500-02, <a href= "http://www.blazephotonics.com.">http://www.blazephotonics.com</a>
  11. S. G. Johnson, and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell's equations in planewave basis,�?? Opt. Express 8, 173-190 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef] [PubMed]
  12. K. Saito, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394</a> [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited